Начальная страница
Леонид
Борисович
Соколинский

Биографическая справка

Область научных интересов

Научные достижения

Гранты

Публикации

Выступления на конференциях

Читаемые учебные курсы

Методические разработки

Полезные
WWW-ссылки

English version

 

Главная страница Биографическая справка Полезные WWW-ссылки

Леонид Соколинский

Доктор физ.-мат. наук, профессор

Леонид Борисович Соколинский

Проректор по информатизации

Южно-Уральский государственный университет (НИУ)

Россия, 454080, г.Челябинск, проспект им. В. И. Ленина, 76, к. 910.
Рабочий телефон: (351) 272-35-00

E-mail: leonid.sokolinsky@susu.ru
Личная страница: http://sok.susu.ru

Skype: leonid_sokolinsky

05.13.18 - математическое моделирование, численные методы и комплексы программ (физико-математические и технические науки)
Диссертационный совет


Леонид Борисович Соколинский является проректором по информатизации и заведующим кафедрой системного программирования Южно-Уральского государственного университета (национального исследовательского университета). Доктор физико-математических наук, профессор, почетный работник высшего профессионального образования РФ, главный редактор серии "Вычислительная математика и информатика" Вестника ЮУрГУ. Является автором и соавтором более 140 научных работ. Л.Б. Соколинским подготовлены восемь кандидатов и один доктор наук. Член ACM с 1997 г.

Индекс Хирша: 7 (WoS), 8 (Scopus), 17 (РИНЦ)

РИНЦ: SPIN-код 6077-5142; Author ID 99314

WoS ResearcherID: E-2421-2013

Scopus ID: 6506818504

ORCID: 0000-0001-9997-3918

ResearchGate: www.researchgate.net/profile/Leonid_Sokolinsky

Academia.edu: susu.academia.edu/Leonid_Sokolinsky


Область научных интересов

  • Искусственные нейронные сети и машинное обучение
  • Параллельные вычисления
  • Системы создания и поддержки проблемно-ориентированных баз данных
  • Вычислительная математика

Научные достижения

Л.Б. Соколинским совместно с его учениками разработаны следующие новые концепции, подходы, модели, методы и алгоритмы.

  • Модель параллельных вычислений BSF
  • Алгоритм LFU-K замещения страниц в кэше
  • Алгоритм планирования POS в распределенных многопроцессорных проблемно-ориентированных вычислительных средах
  • Колоночные индексы и колоночный сопроцессор баз данных для обработки ресурсоемких OLAP-запросов в реляционных СУБД
  • Апекс-метод для решения задач линейного программирования

Гранты

Гранты на проведение научно-исследовательских работ

  1. Государственное задание FENU-2020-0022 Минобрнауки РФ (2020-2022): Математические основы модели и алгоритмы цифровой индустрии.
  2. Грант РФФИ № 20-07-00092-а  (2020-2022 гг.): Разработка сверхмасштабируемых моделей, методов и алгоритмов для решения нестационарных задач оптимизации на основе синтеза суперкомпьютерных и нейросетевых технологий.
  3. Государственное задание 2.7905.2017/8.9 Минобрнауки РФ (2017-2019): Модели, методы и алгоритмы обработки больших данных в задачах искусственного интеллекта, интеллектуального анализа и глубокого машинного обучения.
  4. Грант РФФИ № 17-07-00352-а  (2017-2019 гг.): Разработка сверхмасштабируемых методов и алгоритмов для решения задач линейного программирования большой размерности с быстро меняющимися исходными данными.
  5. Грант РФФИ № 15-29-07959 офи-м  (2015-2017 гг.): Разработка методов и алгоритмов планирования выполнения потоковых приложений при решении задач инженерного анализа в распределенных вычислительных средах.
  6. Государственный контракт ФЦП № 14.574.21.0035  (2014-2015 гг.): "Разработка технологий параллельной обработки сверхбольших объемов данных с использованием колоночного представления и сжатия информации на кластерных вычислительных системах с многоядерными ускорителями и создание на их основе параллельной СУБД".
  7. Государственный контракт ФЦП № 14.514.11.4106 (2013 г.): Разработка принципов построения и формирование банков прототипированных приложений на основе модели потоков работ для больших суперкомпьютерных комплексов с многоядерными ускорителями.
  8. Грант РФФИ № 12-01-00452-а  (2012-2014 гг.): Разработка методов и алгоритмов для решения нестационарных задач линейной оптимизации и распознавания образов на гибридных многопроцессорных системах экзафлопного уровня производительности.
  9. Грант РФФИ-Урал № 10-07-96007-р_урал_а  (2010-2012 гг.): Разработка комплекса полезных моделей человеческого тела для предсказательного моделирования на суперкомпьютерных системах.
  10. Грант РФФИ № 09-07-00241-а (2009-2011 гг.): Алгоритмы и методы параллельной обработки запросов в системах баз данных для многопроцессорных систем с иерархической архитектурой.
  11. Гос. контракт Роснауки No. 2007-4-1.4-20-01-026 (2007-2008 гг.): Создание грид-сервисов для построения структурированных проблемно-ориентированных оболочек для использования инженерных пакетов в распределенных вычислительных средах.
  12. Грант программы СКИФ-ГРИД Союзного государства Россия-Белоруссия No. 2007-СГ-04/4 (2007-2008 гг.): Создание адаптеров для использования пакетов инженерного моделирования и анализа в грид-среде.
  13. Грант РФФИ No. 06-07-89148 (2006-2008 гг.): Технология и методы организации систем баз данных для вычислительных кластеров и GRID.
  14. Грант РФФИ No. 03-07-90031 (2003-2005 гг.): Модели и методы проектирования и разработки параллельных систем баз данных с кластерной архитектурой.
  15. Грант РФФИ No. 00-07-90077 (2000-2002 гг.): Разработка параллельной системы управления базами данных для мультипроцессорных вычислительных систем МВС-100/1000.
  16. Грант РФФИ No. 97-07-90148 (1997-1999 гг.): Разработка высоко-параллельной масштабируемой системы управления базами данных для мультипроцессорной вычислительной системы без совместного использования ресурсов.

Избранные публикации

  1. Sokolinsky L.B. BSF: A parallel computation model for scalability estimation of iterative numerical algorithms on cluster computing systems // Journal of Parallel and Distributed Computing. 2021. Vol. 149. P. 193-206. DOI:10.1016/j.jpdc.2020.12.009. (WOS:000608915300016 Q1, Scopus Q1) [Full Text in PDF]

  2. Sokolinsky L.B., Sokolinskaya I.M. FRaGenLP: A Generator of Random Linear Programming Problems for Cluster Computing Systems // Parallel Computational Technologies. PCT 2021. Communications in Computer and Information Science, vol. 1437. 164-177. DOI:10.1007/978-3-030-81691-9_12. (WOS:000691430300012, Scopus CiteScore Q3) [Full Text in PDF]

  3. Sokolinskaya I.M., Sokolinsky L.B. VaLiPro: Linear Programming Validator for Cluster Computing Systems // Supercomputing Frontiers and Innovations. 2021. Vol. 8, No. 3. P. 51-61. DOI:10.14529/jsfi210303. (Перечень ВАК, Ядро РИНЦ, Scopus CiteScore Q2) [Full Text in PDF]

  4. Sokolinsky L.B., Sokolinskaya I.M. Scalable Parallel Algorithm for Solving Non-stationary Systems of Linear Inequalities // Lobachevskii Journal of Mathematics. 2020. Vol. 41, No. 8. P. 1571–1580. DOI: 10.1134/S1995080220080181. (Перечень ВАК, Ядро РИНЦ, WOS:000581791600017, Scopus Q2) [Full Text in PDF]

  5. Sokolinsky L.B., Sokolinskaya I.M. Scalable Method for Linear Optimization of Industrial Processes // Proceedings - 2020 Global Smart Industry Conference, GloSIC 2020. IEEE, 2020. P. 20–26. Article number 9267854. DOI:10.1109/GloSIC50886.2020.9267854. (WoS, Scopus) [Full Text in PDF]

Полный список научных трудов

Список публикаций, индексированных в РИНЦ, Scopus, Web of Science, DBLP, ACM DL, Google Академия


Недавние выступления на конференциях и семинарах

  1. VaLiPro: валидатор решений задач линейного программирования для кластерных вычислительных систем. Международная научная конференция "Суперкомпьютерные дни в России 2021". Москва, 27-28 сентября 2021 г. [Презентация в формате PDF]

  2. FRaGenLP: генератор случайных задач линейного программирования для кластерных вычислительных систем. Международная научная конференция "Параллельные вычислительные технологии (ПаВТ) 2021". Волгоград, 30 марта - 1 апреля 2021 г. [Презентация в формате PDF]

  3. Модель параллельных вычислений для оценки масштабируемости итерационных численных алгоритмов. Международная конференция "Марчуковские научные чтения 2020". Академгородок, Новосибирск, 19 - 23 Октября 2020 г. [Презентация в формате PDF]

  4. Исследование масштабируемости апекс-метода для решения сверхбольших задач линейного программирования на кластерных вычислительных системах. Международная научная конференция "Суперкомпьютерные дни в России 2020". Москва, 21-22 сентября 2020 г. [Презентация в формате PDF]

  5. Scalable algorithm for Solving Convex Feasibility Problems. Huawei Central Research Institute Mathematics Workshop (Saint Petersburg, October 14 – 15, 2019). [Презентация в формате PDF]

Все выступления на конференциях, начиная с 1999 г.


Читаемые учебные курсы


Методические разработки


Изменено: 20 октября 2021 г.

© Л.Б. Соколинский