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Abstract

This paper examines a novel parallel computation model called bulk synchronous

farm (BSF) that focuses on estimating the scalability of compute-intensive it-

erative algorithms aimed at cluster computing systems. The main advantage

of the proposed model is that it allows to estimate the scalability of a parallel

algorithm before its implementation. Another important feature of the BSF

model is the representation of problem data in the form of lists that greatly

simplifies the logic of building applications. In the BSF model, a computer is

a set of processor nodes connected by a network and organized according to

the master/slave paradigm. A cost metric of the BSF model is presented. This

cost metric requires the algorithm to be represented in the form of operations on

lists. This allows us to derive an equation that predicts the scalability boundary

of a parallel program: the maximum number of processor nodes after which the

speedup begins to decrease. The paper includes examples of applying the BSF

model to designing and analyzing parallel numerical algorithms. The large-scale

computational experiments conducted on a cluster computing system confirm

the adequacy of the analytical estimations obtained using the BSF model.
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1. Introduction

Currently, we are entering the era of exascale computers operating at a speed

of 10 to the 18th power (1018) flops [1]. The recent TOP500 list (November

2020) [2] shows that more than 90% of the most powerful supercomputers have

the cluster architecture. The design of numerical algorithms for such computing

clusters requires new approaches to achieve the high efficiency of parallelization.

It is important to evaluate the scalability of a parallel algorithm at an early stage

of its development. Scalability has been widely used in practice to describe how

system sizes and problem sizes influence the performance of parallel computers

and algorithms [3]. The main measure for evaluating the scalability of a parallel

algorithm on a cluster computing system is the speedup a, which is defined as the

ratio of the algorithm execution time T1 on one processor node to the algorithm

execution time TK on K processor nodes:

a(K) =
T1

TK
. (1)

It is well known that for a given computing cluster architecture and a fixed-size

problem, the speedup of a parallel algorithm does not continue to increase with

an increase in the number of processor nodes, but it tends toward saturation

and culminates in a peak at a certain system size after which the speedup begins

to decrease. Let us define the scalability boundary of the parallel algorithm as

the number of processor nodes Kmax at which the speedup peak is reached for

the given problem size on the target cluster computing system. To detect the

scalability boundary of a parallel algorithm, we have the following two possibil-

ities. First, we can conduct a series of large-scale computational experiments on

the target cluster system to plot the speedup curve and visually determine the

scalability boundary. However, it takes time and effort to build a compilable

and executable implementation of the parallel algorithm in some programming

language. Moreover, we need to obtain access to a sufficiently large cluster

computing system for a sufficiently long time. The second possibility is to use

a suitable parallel computation model that can predict the execution time of

the algorithm for the target cluster computing system.
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The computational model is a simplified and abstract description of a com-

puter. A computer architect, algorithm designer and program developer can

use such a model as a basis to assess their work, including the suitability of

one computer architecture to various applications, the computation complexity

of an algorithm and the potential performance of one program on various com-

puters, etc. A good computational model can simplify the complicated work of

the architect, algorithm designer and program developer while mapping their

work effectively onto real computers [4]. Thus, such a computational model

is sometimes also called a “bridging model” [5]. An universal bridging model

can be applied to any algorithms and any computers (see Fig. 1 a). The RAM

(random access machine) model [6, 7, 8] was such a universal model bridging

the sequential computers and algorithms. With the advent of parallel comput-

ers, numerous attempts were made to build a similar universal model bridg-

ing the multiprocessors and parallel algorithms [9], but these attempts failed.

This is mainly due to the large variety of multiprocessor architectures that are

rapidly emerging and developing in response to the demands of increasing com-

puter performance. Under these conditions, creating a simple and accurate

universal model of parallel computations is almost impossible. The approach

schematically shown in Fig. 1 b was applied to overcome these difficulties [10].

According to this approach, the parallel architectures were divided into three

classes: shared memory, distributed memory, and hierarchical memory multi-

processors [4].

Separate parallel computation models were created for each class of multi-

processors, but almost all these models were universal with respect to a variety

of parallel numerical algorithms. This approach generated simple and reliable

models with a high level of abstraction, such as PRAM [11], BSP [5], and

LogP [12]. Numerous attempts have been made to refine and extend these

models to adapt them to the increasing complexity of multiprocessor system ar-

chitectures. This has led to the emergence of more accurate but complicated to

apply models of parallel computations (see, for example, [13, 14, 15, 16, 17, 18]).

Dividing the entire set of algorithms into different types allows us to correct

3



Model  Type 1 Class A 

Model  

Model  

Type 2 Class B 

Class C Type 3 

Algorithms Computers

Model  Class A 

Model  

Model  

Class B 

Class C 

Algorithms Computers 

Universal 

model 

Algorithms Computers

(a) 

(b) 

(c) 

Figure 1: Models bridging algorithms and computers.

this situation to a certain extent (see Fig. 1 c). Examples of different types of

algorithms can be iterative numerical algorithms, graph algorithms, big data

processing algorithms, and so on. Each pair (algorithm type, architecture class)

can have its own parallel computation model. Such an approach allows us to

reach an acceptable tradeoff between the accuracy of estimations and usability.

G. Bilardi and A. Pietracaprina distinguish the following four typical compo-

nents of a computational model [19]: an architectural component, described as an

interconnection of modules of various functionalities; a specification component,

determining what is a (syntactically) valid algorithm/program; an execution

component, defining which sequences of states of the architectural modules con-

stitute valid executions of a program/algorithm on a given input; and a cost
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component, defining one or more cost metrics for each execution. They also for-

mulate the following three conflicting requirements by which a computational

model can be evaluated: the ease of algorithm/program design and analysis (us-

ability); the ability of estimating, from the cost metrics provided by the model,

the actual performance of a program on a specific real platform (effectiveness)

and on a class of hardware platforms (hardware portability). In accordance

with the approach shown in Fig. 1 c, we add one more component: algorithmic

portability, determining the type of algorithms to which the model is applicable.

In the context of this approach, this article presents a novel model of parallel

computations, named bulk synchronous farm (BSF ) that is an extension of the

BSP model proposed initially by Valiant in [5]. The BSF model is based on

the original idea outlined in [20] and intended for evaluating the parallel itera-

tive compute-intensive numerical algorithms on the cluster computing systems.

Let us clarify the meaning of the restrictions imposed on the scope of the BSF

model’s applicability. The “iterative algorithm” means that the time spent on

the preparation to perform the iterative computations (data input, memory al-

location, variable initialization, and so on) is so markedly less than the time

spent on the iterative computations themselves that we can neglect the initial-

ization overhead within the model. In addition, the framework of the “iterative

algorithm” includes a sequence of steps implemented as a loop in which the next

iteration depends on the results of the previous ones and cannot be executed in

parallel with them. The “compute-intensive numerical algorithm” means that

the time spent for calculations is greater or comparable to the time spent for

input/output and communications between processor nodes. The “cluster com-

puting system” is a set of tightly connected homogeneous processor nodes with

private memory that communicate with each other through the MPI library.

The model treats the processor node as a black box that can perform scalar and

vector operations at a certain speed. The restrictions mentioned above allow us

to obtain a simple and reliable equation for estimating the scalability boundary

of an iterative numerical algorithm by using the BSF model. No other known

model provides such an equation.

5



The rest of the article is organized as follows. Section 2 briefly reviews par-

allel computation models for distributed memory multiprocessors. Section 3

introduces the BSF model description determining its architectural, specifica-

tion and execution components. Section 4 presents the cost metric of the BSF

model and contains the derivation of the main equation that estimates the scal-

ability boundary of a parallel algorithm. Section 5 demonstrates how to apply

the BSF model to estimate the algorithm scalability boundary using the itera-

tive Jacobi method as an example. Section 6 includes the results of large-scale

computational experiments and their comparison with the results obtained an-

alytically using the BSF model. In Section 7, we discuss the strengths and

weaknesses of the BSF model. Section 8 concludes this paper.

2. Related works

One of the first parallel computation models for distributed memory mul-

tiprocessors was BSP (bulk-synchronous parallel) model proposed by Valiant

in [5]. A BSP-computer is a system of K processors that have private memory

and are connected by a network allowing data to be transferred from one proces-

sor to another. The following cost parameters of the interconnect are defined:

g — the time required to transfer a single machine word across the network;

L — the time required for a global synchronization. In the BSP-computer, the

message transfer is simulated using the notion of h-session. The h-session is an

abstraction of an arbitrary communication operation in which each processor

transfers no more than h machine words and receives no more than h machine

words. In the BSP-computer, the execution time of a single h-session can-

not exceed hg. The BSP-program consists of n parallel processes each of that

is assigned to a separate processor. The BSP-program is divided into global

sequential supersteps that are synchronously executed by all processes. Each

superstep includes the following four sequential steps: 1) computations on each

processor using only local data; 2) global barrier synchronization; 3) data trans-

fer from any processor to any other processors by performing a single h-session;
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4) global barrier synchronization. In the BSP model, the cost metric is con-

structed as follows. Let the BSP-program consist of S supersteps. Assume that

each processor performs no more than wi clock cycles during local calculations

in the i-th superstep. The total time ti taken by the system to execute the i-th

superstep is calculated using the equation

ti = wi + hg + L.

The total time T of executing the entire program is determined by the equation

T = W + hgS + LS,

where W =
∑S

i=1 wi. The BSP model has a number of disadvantages. The first,

the BSP model admits to transfer messages with a length of only one machine

word and does not take into account that transferring h machine words as

a single message can be more efficient than transferring h messages with the

length of one machine word. The second, the amount of data processed by a

single processor in each superstep should be approximately equal to the number

of words received during the h-session, i.e. h that limits the granularity of

parallelism from below. The third, the BSP model assumes hardware support

for the global synchronization, but most multiprocessor systems with distributed

memory do not have such mechanism.

To overcome these disadvantages, Culler and co-authors proposed a parallel

computation model named LogP [12] that extends the BSP model. Like the

BSP model, the LogP-computer is a system of P processors that have private

memory and are connected by a network that allows data to be transferred from

one processor to another. The LogP model has the following cost parameters:

L : latency (time of transferring one machine word from one processor to

another);

o : overhead (length of time that a processor is engaged in the transfer

or reception of each message);

g : gap (minimum time interval between consecutive message transfers or

7



consecutive message receptions at a processor);

P : number of processors.

The LogP model assumes that the network has a finite capacity, such that at

most dL/ge messages can be in transfer from any processor or to any processor

at any time. Furthermore, the LogP model assumes that all messages have a

small size (one or a few number of machine words). Large messages need to be

fragmented. The time taken by computations using local data in the superstep

is calculated in the same way as in the BSP model. The time of transferring

one short message from one processor to another is o + L + o. The time of

transferring n consecutive short messages is (n − 1)g + o + L + o. An obvious

disadvantage of the LogP model is the message size limitation.

The LogP model has been improved in numerous extensions. In [37], an

extension of the LogP model called LogGP was proposed. The LogGP model

adds the new parameter G (gap per byte) that determines the time of trans-

ferring one byte within a long message. The time of transferring a message of

length m is o+ (m− 1)G+ L+ o. The LogGPS model [38] extends the LogGP

model by introducing an additional parameter S that takes into account the

synchronization overhead. Actually, the LogGPS model is an adaptation of the

LogPQ model to the features of the communication protocols of the MPICH

library [39] that is a portable implementation of MPI. Like the LogGPS model,

the lognP model [40] is dedicated to cluster computing systems that use MPI

for message transfers. A distinctive feature of the lognP model is that it takes

into account the implicit overhead of transferring data between different levels

of hierarchical memory.

The emergence of heterogeneous cluster systems has generated a new class

of parallel computation models. One of these models called Multi-BSP was

proposed by Valiant in [41]. The Multi-BSP model extends the BSP model

in the following two directions. First, Multi-BSP is a hierarchical model with

an arbitrary number of the levels that represent the actual technical features

of the hierarchical memory and various cache levels of modern multiprocessor
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systems. Second, Multi-BSP includes the amount of memory at each level as

an additional parameter. For each level i in the hierarchy, the following vector

of parameters is introduced: (pi, gi, Li,mi). Here, pi is the number of pro-

cessors, gi is a delay in transferring data from level i to level i + 1, Li is the

synchronization overhead, and mi is the amount of memory/cache. For a sys-

tem that includes d levels, the total number of processors is calculated using

the equation Pd =
∏d

i=1 pi, the total amount of memory is calculated using the

equation Md = md +
∑d−1

i=1 mi

∏d
j=i+1 pj , and the total delay is calculated using

the equation Gd =
∑d

i=1 gi.

Another model of this class is the mlognP [42] extending the lognP model.

The mlognP model is dedicated to computing clusters with multi-core proces-

sors. In this model, the n-level memory hierarchy introduced in the lognP model

is called vertical. Additionally, the authors introduce a horizontal m-level hi-

erarchy of data channels. The zero-level channel serves data exchange between

the cores of a single processor, the first-level channel is used for data exchange

between cores of different processors of a single processor node, the second-level

channel is dedicated for data exchange between the cores of different processor

nodes, and so on. The cost of transferring a message at i-th horizontal level is

calculated using the equation

Ti =

ni−1∑
j=0

(oij + lij) =

ni−1∑
j=0

(f ij(s, 1) + f ij(s, d)),

where the semantics of all parameters within a single horizontal level is inherited

from the lognP model. The model is dedicated to predicting the execution time

of a CUDA-program on cluster computing systems with Kepler GPUs.

In [35], an extension of the BSP model for GPUs running CUDA is proposed.

This model focuses on predicting the execution time of a CUDA-program on

cluster computing systems with Kepler GPUs. The approximated execution

time Tk of a kernel function with t threads is calculated by the following equation

Tk =
t× (Comp+ CommDRAM + CommGPUM )

R× P × λ
.

It sums the computational cost (Comp) with the communication cost of global
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memory (CommGM ) and shared memory (CommSM ) accesses, performed by

each thread. This cost is multiplied by the number of threads t and divided

by the clock rate R times the number of cores P available in the GPU. The

parameter λ is used to model the effects of application optimizations, such as

divergence, shared bank conflicts and coalesced global memory accesses. The

global communication cost is estimated in the same way as in the BSP model.

A large number of other sophisticated parallel computation models for mod-

ern cluster computing systems have been proposed in recent years (see sur-

veys [4, 10]). The main disadvantage of these models is the complexity of

their practical application when designing and analyzing parallel numerical al-

gorithms for exascale computers. None of these models yields a ready-to-use

equation for estimating the scalability boundary of a parallel numerical algo-

rithm.

3. Description of BSF model

In this section, we give a description of the BSF model, namely, determine its

architectural, specification and execution components. The architecture of the

BSF-computer is shown in Fig. 2. A BSF-computer consists of a collection of

homogeneous processor nodes with private memory connected by a communica-

tion network delivering messages among the nodes. All the nodes have the same

capacity. The BSF model treats the processor node of a real computing cluster

as a black box. Node interaction is based on the master/slave paradigm [21]:

one processor node is the master node; all other processor nodes are worker

nodes (also sometimes referred to as “slaves”). The master node serves as the

control and communication hub.

In the BSF model, an algorithm must be specified in the form of operations

on lists by using the Map and Reduce functions. The higher-order functions Map

and Reduce defined in the Bird–Meertens formalism [22] are the basis for the

parallelization of the BSF-algorithms. Let [a1, . . . , al] denote a list of length l

that includes elements of a given set A. Let F : A → B be a function that
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Figure 2: Architecture of BSF-computer.

Algorithm 1. Generic BSF-algorithm template.

1: input A, x(0)

2: i := 0

3: B := Map(Fx(i) , A)

4: s := Reduce(⊕, B)

5: x(i+1) := Compute(x(i), s)

6: i := i+ 1

7: if StopCond(x(i), x(i+1)) goto 9

8: goto 3

9: output x(i)

10: stop

maps the set A to a given set B. The higher-order function Map applies the

function F to each element of the list [a1, . . . , al] and returns a list of results in

the same order:

Map (F, [a1, . . . , al]) = [F (a1) , . . . , F (al)] . (2)

Let [b1, . . . , bl] denote a list of length l that includes elements of the set B.

Let ⊕ : B× B→ B be a binary associative operation on the set B. The higher-

order function Reduce reduces the list [b1, . . . , bl] to a single value by iteratively

applying the operation ⊕ to its elements:

Reduce(⊕, [b1, . . . , bl]) = b1 ⊕ . . .⊕ bl. (3)

The generic template of an iterative BSF-algorithm is presented as Algo-

rithm 1. The variable i denotes the iteration number; x(0) is an initial approx-

imation; x(i) is the ith approximation (the approximation can be a number,
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a vector, or any other data structure); A is the list of elements of a certain

set A, which represents the source data of the problem; Fx : A→ B is a param-

eterized function (the parameter x is the current approximation) that maps the

set A to a certain set B; B is a list of elements of the set B calculated by applying

the function Fx to each element of the list A; ⊕ is a binary associative operation

on the set B. Step 1 reads the input data of the problem and the initial approxi-

mation. Step 2 assigns the zero value to the iteration counter i. Step 3 calculates

the list B by invocating the higher-order function Map(Fx(i) , A). Step 4 assigns

the result of the higher-order function Redice(⊕, B) to the intermediate vari-

able s. Step 5 invocates the user function Compute that calculates the next

approximation x(i+1) taking two parameters: the current approximation x(i)

and the result s of the higher-order function Reduce. Step 6 increases the it-

eration counter i by one. Step 7 checks termination criteria by invocation of

the user Boolean function StopCond, which takes two parameters: the new ap-

proximation x(i) and the previous approximation x(i−1). If StopCond returns

true, the algorithm outputs x(i) as an approximate problem solution and stops

working. Otherwise, the control is passed to Step 3 starting the next iteration.

The parallel execution of a BSF-algorithm is based on the following theo-

retical foundation. Let us divide the list A = [a1, . . . , al] into K sublists of

length m:

A = A1 ++ · · ·++AK (4)

(for simplicity, we assume that l is a multiple ofK, i.e., l = Km for somem ∈ N).

Here, ++ denotes the operation of list concatenation. According to the promotion

theorem [23], the following equation holds:

Reduce (⊕,Map (Fx, A)) =

= Reduce (⊕,Map (Fx, A1))⊕ · · · ⊕Reduce (⊕,Map (Fx, AK)) .
(5)

Equation (5) gives us the generic parallelization scheme shown in Fig. 3. We

can run K parallel worker threads that independently perform the higher-order

functions Map and Reduce over sublists A1, . . . , AK . Then, the master thread

joins the produced partial foldings s1, . . . , sK into the single list S and performs
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Figure 3: BSF-algorithm parallelization schema.

higher-order function Reduce over it.

The generic parallelization template of an iterative BSF-algorithm is pre-

sented as Algorithm 2. It includes K + 1 parallel processes: one master process

and K worker processes. The master process runs on the master node. Each

worker process runs on a separate worker node. In Step 1, the master process

reads the initial approximation x(0) and assigns the zero value to the iteration

counter i. At the same time, every j th worker process reads the sublist Aj that

assigned to it for processing and is treated as local data. In Step 2, the master

process sends the current approximation x(i) to all worker processes. After that,

every j th worker process independently applies higher-order functions Map and

Reduce to its sublist (Steps 3 and 4). In Steps 3 and 4, the master process is

idle. In Step 5, every j th worker process sends to the master process the partial

folding sj that is a result of the Reduce function. In Steps 6-9, the master pro-

cess performs the following actions: executes the higher-order function Reduce

over the list of partial foldings [s1, . . . , sK ]; invocates the user function Compute

that calculates the next approximation; and checks the termination criteria by

using the user Boolean function StopCond and assigns its result to the Boolean

variable exit. In Steps 6-9, the worker processes are idle. In Step 10, the master
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Algorithm 2. Generic BSF-algorithm parallelization template.

Master j th Worker (j=1,. . . ,K)

1: input x(0); i := 0

2: SendToAllWorkers(x(i))

3:

4:

5: RecvFromWorkers (s1, . . . , sK)

6: s := Reduce (⊕, [s1, . . . , sK ])

7: x(i+1) := Compute
(
x(i), s

)
8: i := i+ 1

9: exit := StopCond
(
x(i), x(i+1)

)
10: SendToAllWorkers(exit)

11: if not exit goto 2

12: output x(i)

13: stop

1: input Aj

2: RecvFromMaster
(
x(i)
)

3: Bj := Map(Fx(i) , Aj)

4: sj := Reduce(⊕, Bj)

5: SendToMaster(sj)

6:

7:

8:

9:

10: RecvFromMaster(exit)

11: if not exit goto 2

12:

13: stop

process sends the exit value to all worker processes. If the exit value is false,

the master process and worker processes go to the next iteration; otherwise,

the master processes output the result and the computation stops. Note that

in Steps 2 and 10, all processes perform the implicit global synchronization. In

this template, all worker processes execute the same code for different sublists.

Since all sublists have the same length, there is no need to balance the workload

of the worker nodes.

4. Cost metric of BSF model

The BSF model assumes that the overhead of initializing and terminating

a program is negligible compared to the overhead of executing the iterative

process. The cost of an iterative process is the sum of the costs of individual

14



iterations. Therefore, to estimate the execution time of an iterative BSF-algo-

rithm, we simply need to obtain an estimation of the time cost of one iteration.

The BSF model includes the following cost parameters for a single iteration:

K : number of worker nodes;

l : length of the list A representing the input data (the same as

the length of the list B representing the result of the higher-order

function Map);

L : latency (time of transferring one-byte message node-to-node);

tc : time taken by the master node to send the current approximation to

and receive a folding from one worker node (including latency);

tMap : time taken by a single worker node to execute the higher-order

function Map over the entire list A;

tRdc : time taken by a single worker node to execute the higher-order

function Reduce over the entire list B;

tp : time taken by the master node to process the result received from

the worker nodes and check the termination criteria (steps 7 and 9 that

do not depend on K).

We will also use the parameter ta that denotes the time taken by a node (master

or worker) to execute the operation ⊕ being the second parameter of the higher-

order function Reduce:

ta =
tRdc

l − 1
. (6)

First, let us consider the performance of Algorithm 2 on a BSF-computer

consisting of one master node and one worker node (see Fig. 4). Here, the

dashed arrows denote the data transfers, and the dotted arrows denote the

computation loops. Let T1 denote the execution time of one iteration of Algo-

rithm 2 by a BSF-computer with one master node and one worker node. Using

the cost parameters introduced above, we obtain the following estimation of the

time T1:

T1 = tp + tc + tMap + tRdc. (7)
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Figure 4: Diagram of Algorithm 2 for the configuration with one master and one worker.

Second, let us consider the performance of Algorithm 2 on a BSF-computer

consisting of one master node and K worker nodes (see Fig. 5). We assume

from now on that l ≥ K. Let TK denote the execution time of one iteration

of Algorithm 2 by a BSF-computer with one master node and K worker nodes.

It is known that a good MPI implementation would implement a broadcast

or allreduce for K processes with O(logK) [34]. If we use MPI Broadcast to

implement Step 2 and MPI Reduce to implement Step 5 of Algorithm 2 then

we can obtain the following estimation for TK :

TK = (K − 1)ta + tp + (log2 (K) + 1) tc +
tMap + (l −K)ta

K
. (8)

Note that for K = 1, this equation is converted to equation (7).

In the BSF model, the speedup a as a function of K is calculated as follows:

aBSF (K) =
T1

TK
=

tp + tc + tMap + tRdc

(K − 1)ta + tp + (log2 (K) + 1) tc +
tMap+(l−K)ta

K

, (9)

where K is the number of worker nodes. For positive values of all parameters

and for K > 1, the function aBSF (K) defined by equation (9) has the following

properties:

aBSF (1) = 1; (10)

aBSF (K) > 0; (11)

lim
tcomp→0

aBSF (K) =
1

log2 (K) + 1
, (12)
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Figure 5: Diagram of Algorithm 2 for the configuration with one master and K workers.

where tcomp = tMap + tRdc + tp. All of these properties follow directly from

equation (9) and do not require proofs. From the content point of view, prop-

erty (10) corresponds to reality: speedup on a single worker node must be equal

to 1. Property (11) also confirms the adequacy of equation (9) since the speedup

is always a positive quantity. Property (12) says that for very small values of

parameters tMap, tRdc and tp that determine the total time of computations,

equation (9) tends to equation aBSF (K) = 1/ (log2 (K) + 1). The last one, on

the interval [1,+∞), determines a monotonically decreasing function that has

a maximum value 1 for K = 1. This means that the BSF model is not ap-

plicable for algorithms in which the time spent on data transferring between

the processor nodes is incomparably greater than the time spent on computa-

tions. In this case, one should use another parallel computation model (see the

survey [10]). We state the main property of equation (9) in the form of the

following proposition:

Proposition 1. Let l ∈ N; L, tc, tp ∈ R>0; tMap, ta ∈ R>0; tMap + ta > 0.

Then, the function aBSF (K) defined by equation (9) has a single extremum on

the interval (1,+∞), which is the maximum.
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Proof. To find the extrema of function (9), let us calculate the derivative of

the speedup with respect to K:

a′(K) =
(tp + tc + tMap + (l − 1)ta) ·

(
taK+tMap+(l−K)ta

K2 − ta − tc
K ln 2

)
(

(K − 1)ta + tp + (log2 (K) + 1) tc +
tMap+(l−K)ta

K

)2 .

Multiplying the numerator and denominator byK2 and combining the like terms

in the denominator, we obtain

a′(K) =
(tp + tc + tMap + (l − 1)ta) ·

(
−taK

2 −Ktc/ ln 2 + tMap + lta
)

(K(K − 1)ta +Ktp +K (log2 (K) + 1) tc + tMap + (l −K)ta)
2 . (13)

Extrema are reached at points where the derivative is zero. Therefore, we need

to solve the following equation:

(tp + tc + tMap + (l − 1)ta) ·
(
−taK2 −Ktc/ ln 2 + tMap + lta

)
(K(K − 1)ta +Ktp +K (log2 (K) + 1) tc + tMap + (l −K)ta)

2 = 0.

Under the conditions of the proposition, the first factor of numerator and the

denominator in this equation are positive for all K > 0. Hence, this equation is

equivalent to the following quadratic equation

−taK2 − (tc/ ln 2 + ta)K + tMap + lta = 0

that has only one root on the interval [1,+∞):

K0 =
1

2

√(
tc

ta ln 2

)2

+
tMap

ta
+ 4l − tc

ta ln 2
.

Since K2 has a negative coefficient, the derivative a′(K) calculated by equa-

tion (13) takes only positive values in the interval [1,K0) and only negative

values in the interval (K0,+∞). Therefore, the point K0 is the maximum of

the function aBSF (K) on the interval [1,+∞). The proposition is proven.

Proposition 1 gives us the following equation to evaluate the scalability

boundary of a BSF-algorithm:

KBSF =
1

2

√(
tc

ta ln 2

)2

+
tMap

ta
+ 4l − tc

ta ln 2
. (14)

It is noteworthy that the scalability boundary of a parallel BSF-algorithm does

not depend on the time tp taken by the master node to process the result received
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from the worker nodes and check the termination criteria (steps 7 and 9 of

Algorithm 2). This is quite natural. Indeed, tp does not depend on the number

of workers K and therefore cannot affect the point of speedup curve maximum

that is completely determined by the derivative of the speedup with respect

to K.

5. Applying the BSF model to the Jacobi method

In this section, we will show how to apply the BSF model to estimate the

scalability boundary of a parallel algorithm without software implementation

and computational experiments. As an example, we use the Jacobi iterative

method. The Jacobi method [24] is a simple iterative method for solving a sys-

tem of linear equations. This method was originally described by the German

mathematician Carl Gustav Jacob Jacobi in [25]. Let us give a brief description

of the Jacobi method.

Let a joint square system of linear equations in a matrix form be given in

Euclidean space Rn:

Ax = b, (15)

where

A =


a11 · · · a1n

...
. . .

...

an1 · · · ann

 ;

x = (x1, . . . , xn);

b = (b1, . . . , bn).

It is assumed that aii 6= 0 for all i = 1, . . . , n. Let us define the matrix

C =


c11 · · · c1n
...

. . .
...

cn1 · · · cnn


in the following way:

cij =

 −
aij

aii
,∀j 6= i;

0,∀j = i.
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Let us define the vector d = (d1, . . . , dn) as follows: di = bi/aii. The Jacobi

method of finding an approximate solution of system (15) consists of the follow-

ing steps:

Step 1. k := 0; x(0) := d.

Step 2. x(k+1) := Cx(k) + d.

Step 3. If
∥∥x(k+1) − x(k)

∥∥2
< ε, go to Step 5.

Step 4. k := k + 1; go to Step 2.

Step 5. Stop.

In the Jacobi method, an arbitrary vector x(0) can be taken as the initial approx-

imation. In Step 1, the initial approximation x(0) is assigned by the vector d. In

Step 3, the Euclidean norm ‖·‖ is used in the termination criteria. The diagonal

dominance of the matrix A is a sufficient condition for the convergence of the

Jacobi method:

|aii| >

 n∑
j=1

|aij |

− |aii|
for all i = 1, . . . , n, and at least one inequality is strict. In this case, the

system (15) has a unique solution for any right-hand side.

Let us represent the Jacobi method in the form of an algorithm on lists.

Let cj denote the j-th column of matrix C:

cj =


c1j
...

cnj

 .

Let G = [1, . . . , n] be the list of natural numbers from 1 to n. For any vector

x = (x1, . . . , xn) ∈ Rn, let us define the function Fx : {1, . . . , n} → Rn as

follows:

Fx(j) = xjcj =


xjc1j

...

xjcnj

 , (16)

i.e., the function Fx(j) multiplies the j-th column of the matrix C by the j-th

coordinate of the vector x. The BSF implementation of the Jacobi method
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Algorithm 3. BSF-Jacobi algorithm.

1: input C,G, d

2: k := 0;x(0) := d

3: B := Map(Fx(k) , G)

4: s := Reduce(~+, B)

5: x(k+1) := s~+d

6: k := k + 1

7: if
∥∥x(k+1)~−x(k)

∥∥2
< ε goto 9

8: goto 3

9: output x(k)

10: stop

presented as Algorithm 3 can be easily obtained from the generic BSF-algorithm

template (Algorithm 1). In Algorithm 3, ~+ and ~− denote the operations of

vector addition and subtraction, respectively. Note that the matrix C entered

in line 1 is implicitly used to calculate the values of the function Fx(k) in line 3.

The BSF-Jacobi parallel algorithm (see Algorithm 4) is automatically gen-

erated from Algorithm 3 by using the generic BSF-algorithm parallelization

template (Algorithm 2). Let us evaluate this parallel algorithm by using the

BSF model. We assume that all arithmetic operations (addition and multipli-

cation) as well as the comparison operation of floating-point numbers take the

same time, which we denote as τop. To perform the scalability analysis of the

BSF Jacobi algorithm, let us introduce the following notation (all quantities are

taken with respect to a single iteration):

cc : the quantity of real numbers that the master sends to and receives

from a single worker within one iteration;

cMap : the quantity of arithmetic operations performed in Step 3 of the

Algorithm 3;

ca : the quantity of arithmetic operations required to calculate the sum

of two vectors.
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Algorithm 4. BSF-Jacobi parallel algorithm.

Master j th Worker (j=1,. . . ,K )

1: input d

2: k := 0;x(0) := d

3: SendToAllWorkers(x(k))

4:

5:

6: RecvFromWorkers (s1, . . . , sK)

7: s := Reduce
(
~+, [s1, . . . , sK ]

)
8: x(k+1) := s~+d

9: k := k + 1

10: exit :=
∥∥x(k+1)~−x(k)

∥∥2
< ε

11: SendToAllWorkers(exit)

12: if not exit goto 3

13: output x(k)

14: stop

1: input Cj , Gj

2:

3: RecvFromMaster
(
x(k)

)
4: Bj := Map(Fx(k) , Gj)

5: sj := Reduce(~+, Bj)

6: SendToMaster(sj)

7:

8:

9:

10:

11: RecvFromMaster(exit)

12: if not exit goto 3

13:

14: stop

Let us calculate these quantities. At the beginning of the iteration, the mas-

ter sends to each worker the current approximation x(k), which is a vector of

length n. At the ending of the iteration, each worker sends the calculated vec-

tor sj of length n to the master. Hence,

cc = 2n. (17)

The higher-order function Map (Fx(k) , G), in this case, multiplies all columns of

the matrix C by the corresponding coordinates of the vector x. Consequently,

cMap = n2. (18)
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Adding two vectors of length n requires n arithmetic operations. Thus,

ca = n. (19)

Let τop be the average execution time of a single arithmetic or comparison

operation by the processor node, and τtr be the average time for transferring

a single floating number across the network excluding latency. Using (17)-(19),

we obtain the following values of the cost parameters of the BSF-Jacobi parallel

algorithm:

tc = ccτtr + 2L = 2(nτtr + L); (20)

tMap = cMapτop = n2τop; (21)

ta = caτop = nτop. (22)

For the BSF-Jacobi algorithm, the length l of the list is equal to the space

dimension n:

l = n. (23)

Substituting the values of the right-hand sides of equations (20)-(23) into equa-

tion (14), we obtain the following equation for estimating the scalability bound-

ary of the BSF-Jacobi parallel algorithm:

KBSF−Jacobi =

√(
nτtr + L

nτop ln 2

)2

+
5

2
n− nτtr + L

nτop ln 2
. (24)

For large values of n, this is equivalent to

KBSF−Jacobi ≈ O(
√
n). (25)

Therefore, we can conclude that the scalability boundary of the BSF-Jacobi

parallel algorithm grows in proportion to the square root of the problem di-

mension n. It should be noted that this result was obtained before a software

implementation of the BSF-Jacobi parallel algorithm. In the next section, we

verify this analytical estimation by computational experiments on a real cluster

system.
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Table 1: Specifications of “Tornado SUSU” computing cluster.

Parameter 480

Processor Intel Xeon X5680 (6 cores, 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS

6. Computational experiments

For the rapid development of the parallel BSF-programs, the author imple-

mented an algorithmic skeleton in C++ using the MPI parallel programming

library [26]. The source code of this BSF-skeleton [27] is freely available on

GitHub, at https://github.com/leonid-sokolinsky/BSF-skeleton. Using

the BSF-skeleton, we developed the parallel implementations of several itera-

tive numerical methods and performed the computational experiments on the

“Tornado SUSU” computing cluster [28], whose specifications are shown in Ta-

ble 1. In this section, we present some of the results of these computational

experiments and compare them with analytical results obtained by using the

BSF cost metric.

The first series of experiments was performed with the BSF-Jacobi par-

allel algorithm discussed in Section 5. The source code implemented by us-

ing the BSF-skeleton is freely available on GitHub, at https://github.com/

leonid-sokolinsky/BSF-Jacobi. To carry out the experiments, we used a

scalable system of linear equations (15) having the following coefficient matrix A

and the vector of constant terms b:

A =


1 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 . . . 1 n

 ; b =


n

n+ 1
...

2n− 1

 .
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Table 2: Cost parameters for BSF-Jacobi parallel algorithm (seconds).

n 1 500 5 000 10 000 16 000

tc 7.20E-5 1.06E-3 2.17E-3 2.95E-3

tp 5.01E-6 1.72E-5 3.70E-5 5.61E-5

ta 1.89E-6 5.27E-6 9.31E-6 2.10E-5

tMap 6.23E-3 9.28E-2 3.73E-1 7.73E-1

comp
comm 126 113 215 376

The specified system has a unique solution x = (1, . . . , 1) and has the diago-

nal dominance property for any n > 2. We investigated the speedup of the

BSF-Jacobi parallel algorithm by varying the number K of working nodes.

The speedup atest(K) was calculated by the equation

atest(K) =
T1

TK
,

where T1 is the execution time on configuration with one master node and one

worker node, and TK is the execution time on configuration with one master

node and K worker nodes. The computations were performed for dimensions

n = 1 500, n = 5 000, n = 10 000 and n = 16 000. The results are presented in

Fig. 6 (the solid curves marked with squares). In the same diagrams, we plot-

ted the curves of speedup calculated analytically by equation (9) (the dotted

curves marked with crosses). The diagrams in Fig. 6 also include the values

of scalability boundaries obtained using equation (14). This values are flagged

with vertical dotted lines. To calculate these analytical estimations, we exper-

imentally determined the values of cost parameters using a configuration with

one master and one worker. These values are shown in Table 2. In all cases

the latency L (time of transferring one-byte message node-to-node) was 1.5E-5

sec. We also added the cost ratio between computations and communications

to the table. Here comp = tMap + (n− 1)ta + tp and comm = tc. The cost of

computation significantly exceeds the cost of communications in the BSF-Jacobi

algorithm, and this gap tends to increase with the size of the problem. The fact
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(c) n = 16 000

Figure 6: BSF-Jacobi parallel algorithm speedup obtained empirically and theoretically.

that the value of comp
comm for n = 1 500 is greater than the value for n = 5 000 is ex-

plained as follows. When the cost of a single data exchange becomes comparable

to the latency, the latency begins to significantly affect the result.

Let us define the prediction error for the problem of dimension n as follows:

Error(n) =
|Ktest(n)−KBSF (n)|

max (Ktest(n),KBSF (n))
, (26)

where Ktest(n) is the speedup boundary obtained experimentally, and KBSF (n)

is the speedup boundary obtained analytically by (14). For the Jacobi-BSF

parallel algorithm, we obtain the results shown in Table 3. In all cases, the

prediction error does not exceed 15% and tends to decrease with increasing the

problem size.
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Table 3: Prediction errors for BSF-Jacobi parallel algorithm.

n 1 500 5 000 10 000 16 000

KBSF 47 64 112 150

Ktest 40 60 120 160

Error 0.15 0.06 0.07 0.06

The second series of experiments, the results of which we want to present

in this article, relate to a simplified n-body problem [29] that describes how

a small body will move under the influence of gravitational forces among n large

motionless bodies. Let us give a brief description of this problem. Let Y ⊂ R3 be

a finite set of points representing motionless bodies of large mass. We will denote

these points by Y1, . . . , Yn, and their masses by m1, . . . ,mn, where n = |Y|. Let

the point X represent a body x of low mass mx moving relative to motionless

large mass bodies Y1, . . . , Yn. We assume that no forces other than gravity

act on the body x. We know the initial position X(t0) ∈ R3 and the velocity

vector V (t0) ∈ R3 of the body x at the instant of time t0. The problem is to

predict the subsequent motion of the body x using Newton’s laws of motion and

Newton’s law of universal gravitation. To accomplish this, we will sequentially

calculate the following positions of the body x using a time slot ∆t:

X(t0), X(t0+∆t), X(t0+2∆t), X(t0+3∆t), . . . (27)

According to the law of universal gravitation, the gravitational force Fi of

the mass point Yi acting on the body x can be calculated using the equation

Fi = G
mimx

‖Yi −X‖2
(Yi −X), (28)

where X represents the current coordinates of the body x. According to New-

ton’s second law of motion, the acceleration αi of the body x produced by the

force Fi can be calculated using the equation

αi =
Fi

mx
. (29)
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Algorithm 5. BSF-Gravity algorithm.

1: input A,X0, V0, t0, T

2: t := t0; X := X0; V := V0;

3: B := Map(fX , A)

4: α := Reduce(~+, B)

5: ∆t := Delta t(V, α)

6: V := V ~+α∆t

7: X := X~+V∆t

8: t := t+ ∆t

9: if t < T goto 3

10: output X

11: stop

The acceleration produced by the all forces F1, . . . , Fn is calculated by the equa-

tion

α =

n∑
i=1

αi. (30)

Consequently, the velocity vectors required to calculate (approximately) the

elements of the sequence (27) can be calculated using the following iterative

equation

V (t+∆t) = V (t) + α(t+∆t)∆t, (31)

where

α(t+∆t) =
n∑

i=1

G
mi∥∥Yi −X(t)

∥∥2

(
Yi −X(t)

)
. (32)

Using (31), we obtain

X(t+∆t) ≈ X(t) + V (t+∆t)∆t. (33)

Using the generic BSF-algorithm template, we obtain Algorithm 5 named the

BSF-Gravity that presents an implementation of the simplified n-body problem.

In the context of this problem, A is the list of pairs (Yi,mi) that specify the

coordinates and mass of the i-th motionless large body:

A = [(Y1,m1), . . . , (Yn,mn)]; (34)
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Algorithm 6. BSF-Gravity parallel algorithm.

Master j th Worker (j=1,. . . ,K)

1: input X0, V0, t0, T

2: t := t0; X := X0; V := V0;

3: SendToAllWorkers(X)

4:

5:

6: RecvFromWorkers (α1, . . . , αK)

7: α := Reduce
(
~+, [α1, . . . , αK ]

)
8: ∆t := Delta t(V, α)

9: V := V ~+α∆t

10: X := X~+V∆t

11: t := t+ ∆t

12: exit := t < T

13: SendToAllWorkers(exit)

14: if not exit goto 3

15: output X

16: stop

1: input Aj

2:

3: RecvFromMaster (X)

4: Bj := Map(fX , Aj)

5: αj := Reduce(~+, Bj)

6: SendToMaster(αj)

7:

8:

9:

10:

11:

12:

13: RecvFromMaster(exit)

14: if not exit goto 3

15:

16: stop

T is the instant of time that culminates the calculation of the trajectory of the

body x; fX is the parameterized function defined by the equation

fX(Yi,mi) = G
mi

|Yi −X|2
(Yi −X) (35)

that the higher-order function Map takes as a parameter to apply to items of the

list A; and ~+ denotes the operation of vector addition in R3. The user function

Delta t(V, α) calculates the time slot ∆t depending on the current velocity V

and acceleration α. The parallel implementation of the BSF-Gravity algorithm

is obtained automatically by using the generic BSF-algorithm parallelization

template (Algorithm 2). This implementation is presented in Algorithm 6.
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Figure 7: BSF-Gravity parallel algorithm speedup obtained empirically and theoretically.

Let us evaluate Algorithm 6. Assume that the user function Delta t(V, α)

is defined as follows:

Delta t(V, α) =
η

‖V ‖2 · ‖α‖4
,

where η is a positive constant. Calculating this function takes 13 arithmetic

operations. The analysis of Algorithm 6 gives us the following estimations:

tc = 6τtr + 2L, tMap = 17nτop, ta = 3τop and l = n. Substituting these quan-

tities in (14), we obtain the following scalability boundary for the BSF-Gravity

parallel algorithm:

KBSF−Gravity =
1

2

√(
6τtr + 2L

3τop ln 2

)2

+
29

3
n− 6τtr + 2L

3τop ln 2
. (36)

30



Table 4: Prediction errors for BSF-Gravity parallel algorithm.

n 300 600 900 12 000

KBSF 69 141 210 279.1

Ktest 60 140 200 280

Error 0.13 0.01 0.05 3.6E-4

For n→∞, equation (36) asymptotically tends to the following estimation:

KBSF−Gravity ≈ O(
√
n), (37)

where n is the number of motionless large bodies.

We implemented the BSF-Gravity parallel algorithm using the BSF-skele-

ton. The source code of this implementation is freely available on GitHub,

at https://github.com/leonid-sokolinsky/BSF-gravity. Using this im-

plementation, we conducted the computational experiments on the “Tornado

SUSU” computing cluster. The computations were performed for the following

numbers of large bodies: n = 300, n = 600, n = 900 and n = 1 200. A compari-

son of the results obtained empirically and theoretically (by using equation (9))

is shown in Fig. 7. To plot the curve tagged as “BSF”, we experimentally de-

termined the following cost parameters that are independent of n: tc = 5 ·10−5,

tp = 9.5 · 10−7, ta = 4.7 · 10−9 and L = 1.5 · 10−5 (in seconds). For the pa-

rameter tMap that depends on n, the following values in seconds were obtained:

3.6 · 10−3, 7.46 · 10−3, 1.12 · 10−2, 1.5 · 10−2 for n equal to 300, 600, 900 and 1200,

respectively. The cost ratio between computations and communications varied

from 100 at n = 300 to 411 at n = 1200. The error values calculated using

equation (26) are shown in table 4. In all cases, the error does not exceed 13%

and tends to decrease with increasing the problem size.

Another example of using the BSF model can be found in [30], where we

investigate an iterative numerical method for solving nonstationary systems of

linear inequalities. In this article, we also compare the speedup curves con-

structed analytically using the BSF model and the speedup curves obtained by
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conducting experiments on the real cluster computing system. All conducted

experiments confirm the adequacy of the BSF model.

7. Discussion

In this section, we discuss the strengths and weaknesses of the BSF model

and answer the following questions.

1. Is it possible to use the BSF model for the algorithms that process sets?

2. Can we apply the BSF model to an algorithm that uses only the Map function

without the Reduce function?

3. Can we apply the BSF model to a numerical algorithm that is not iterative?

4. What is the difference between MapReduce and the BSF model?

5. Does the BSF model admit a configuration of the BSF-computer with two

or more master nodes?

6. Does the BSF model take into account the multicore structure of the proces-

sor node?

7. Is the BSF model the best predictor of the execution time of a parallel algo-

rithm on a target multiprocessor system?

Let us start by discussing the advantages of the BSF model. The main

contribution of the BSF model and this article is equation (14) that allows us

to estimate the scalability boundary of a parallel program at an early stage of

its design. No other known model yields such an equation. In addition, the

BSF model is easy to use when designing and analyzing parallel algorithms and

programs. Based on the BSF model, we constructed a compilable algorithmic

skeleton using the MPI library that allows quick creation of a syntactically

valid BSF program. However, to acquire this result, we introduced a number of

constraints.

First, the BSF model requires the representation of a numerical method as

an algorithm over lists using the higher-order functions Map and Reduce. How

strong is this restriction? We will start by answering the question whether
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the BSF model can be applied to multisets (sets that allows duplicates) [31].

Let A = {a1, . . . , an} be a finite multiset. By ordering, we can represent A as

the list A = [a1, . . . , an]. Let B = Map(f,A) = [f(a1), . . . , f(an)]. Ignoring

ordering, we can transform B to the multiset B = {f(a1), . . . , f(an)}. Thus, we

can apply the BSF model to multisets without any modifications. Applying the

BSF model to sets is also possible if the function f does not generate duplicates.

Taking into account the generic nature of the Map function, we can conclude

that the representation of the numerical method as an algorithm over lists is

not a very strong restriction.

The second question is: Can we apply the BSF model to an algorithm that

uses only the Map function without the Reduce function? The answer is “yes”.

In this case, the parameter ta denoting the time of execution of the operation ⊕

is assumed to be zero. An example of applying the BSF model to an algorithm

using only the Map function is presented in [32].

Next, we limited the scope of the BSF model application to the iterative

compute-intensive numerical algorithms. The iterative nature of the algorithm

assumes that the iterative process takes much longer than initialization (read-

ing or generating the problem data, allocating the memory, etc.), and we can

neglect the cost of the last (there is no corresponding parameter in the BSF cost

metric). Consequently, we can use the BSF model if our noniterative algorithm

is presented in the form of operations over lists, and the initialization cost is

negligible compared to the execution cost of the Map and Reduce functions.

This is the answer to the third question stated above.

The compute-intensive nature of the algorithm assumes that the cost of

computations is greater than or comparable to the cost of interprocessor com-

munications and input/output operations. If we have the opposite situation,

when the communications and input/output operations significantly exceed the

calculations, then, due to property (12), we have KBSF = 1, and the BSF model

becomes inapplicable. This is the main difference between the BSF model and

the programming model MapReduce [33] that is intended for processing and

generating big data sets. This is the answer to the 4th question.
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The 5th question is: Does the BSF model admit a configuration of the

BSF-computer with two or more master nodes? The answer is “no”. All at-

tempts to derive an equation such as (14) failed in the case of configurations

with two or more master nodes.

The 6th question is: Does the BSF model take into account the multicore

structure of the processor node? The answer is also “no”: the model treats the

processor node as a black box that can perform scalar and vector operations

at a certain speed. Most of the modern cluster computing systems have the

processor nodes that include multicore processors and GPUs. The efficient us-

age of such systems is impossible without the use of intranode parallelism and

vectorization. However, in this situation, how can we determine the adequate

values of the cost parameters tMap (the time taken by a single processor node

to process the whole list by using the higher-order function Map) and ta (the

time taken by a processor node to execute the operation ⊕)? Let us explain

the possible solution of this problem by the following example. Let ⊕ be the

addition operation of two vectors of dimension 1 000 000. We write a program

that computes the sum of 1 000 000 such vectors using all resources of the in-

tranode parallelism and vectorization. Then, we run this program on a single

processor node of the target system and measure the execution time (excluding

initialization). After that, we divide the resulting time by 1 000 000 and obtain

the value of the parameter ta. In the same way, we can obtain the value of

the parameter tMap. This is a quite rough method for obtaining the values of

these parameters. However, the main goal of the BSF model is to predict the

scalability boundary being the maximum number of processor nodes to which

the speedup increases. If a more accurate prediction of the execution time of

a parallel program on a computing cluster with multicore nodes is needed, then

other parallel computation models should be used (see, for example, [35, 36]).

Therefore, the BSF model is not the best predictor of the execution time of

a parallel algorithm on a target multiprocessor system. This is the answer to

the last question of our discussion.
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8. Conclusions

In this paper, we presented a novel parallel computation model named bulk

synchronous farm (BSF) that is an extension of the BSP (bulk-synchronous

parallel) model. The main advantage of the proposed model is that it allows to

estimate the scalability of a parallel algorithm before its implementation. An-

other important feature of the BSF model is the representation of problem data

in the form of lists that greatly simplifies the logic of building applications. To

develop the BSF model, we used a new approach that restricts not only the class

of multiprocessor architectures but also the type of algorithms admitted by the

model. The application scope of the BSF model is algorithms of the compute-

intensive iterative type performed on cluster computing systems. In the BSF

model, the processor nodes are organized by using the master/slave paradigm.

The BSF model uses the Map/Reduce scheme to parallelize applications. We

constructed a cost metric of the BSF model. This metric requires the represen-

tation of a numerical method as an algorithm over lists using the higher-order

functions Map and Reduce. Using this metric, we derived equation (14) that

allowed us to estimate the scalability boundary of a parallel algorithm before

its software implementation. No other known model yields such an equation.

Based on the BSF model, we constructed a compilable algorithmic skeleton

using the MPI library that allows the quick creation of a syntactically valid

BSF-program. Using this skeleton, we implemented several iterative algorithms

and conducted large-scale computational experiments on a real cluster comput-

ing system. In all cases, experiments have shown that the scalability boundary

of the algorithm obtained analytically using the BSF cost metric is very close to

the scalability boundary obtained experimentally. Our experience with the BSF

model has shown that this model is accurate and easy to use when designing

and analyzing parallel algorithms and programs.
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