11th International Conference "Distributed Computing and Grid Technologies in Science and Education" (GRID'2025)

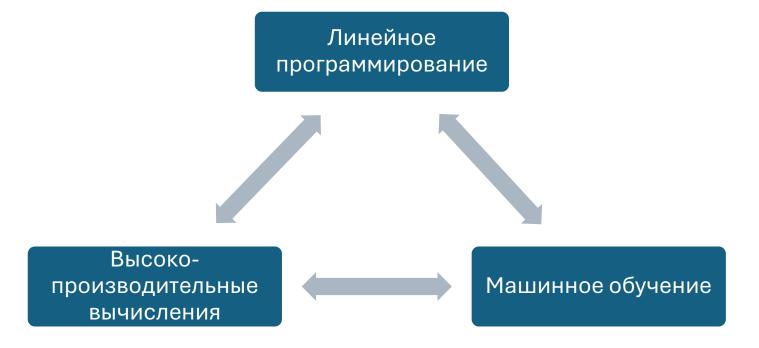
Высокопроизводительные вычисления, нейронные сети и линейное программирование: на пути к гибридному искусственному интеллекту

Соколинский Леонид Борисович доктор физ.-мат. наук

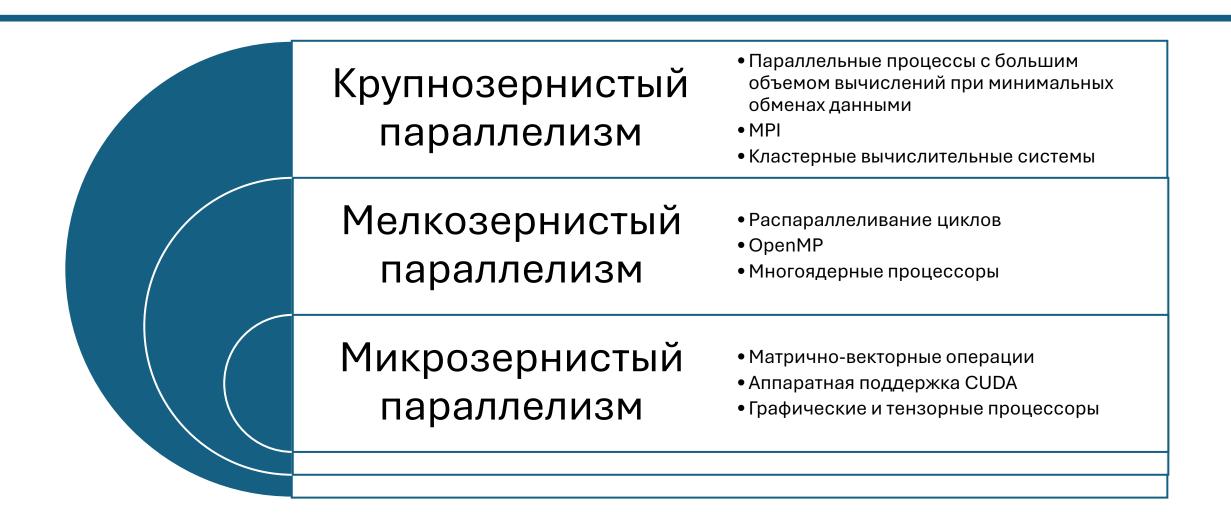
Южно-Уральский государственный университет (национальный исследовательский университет)

Гибридный искусственный интеллект

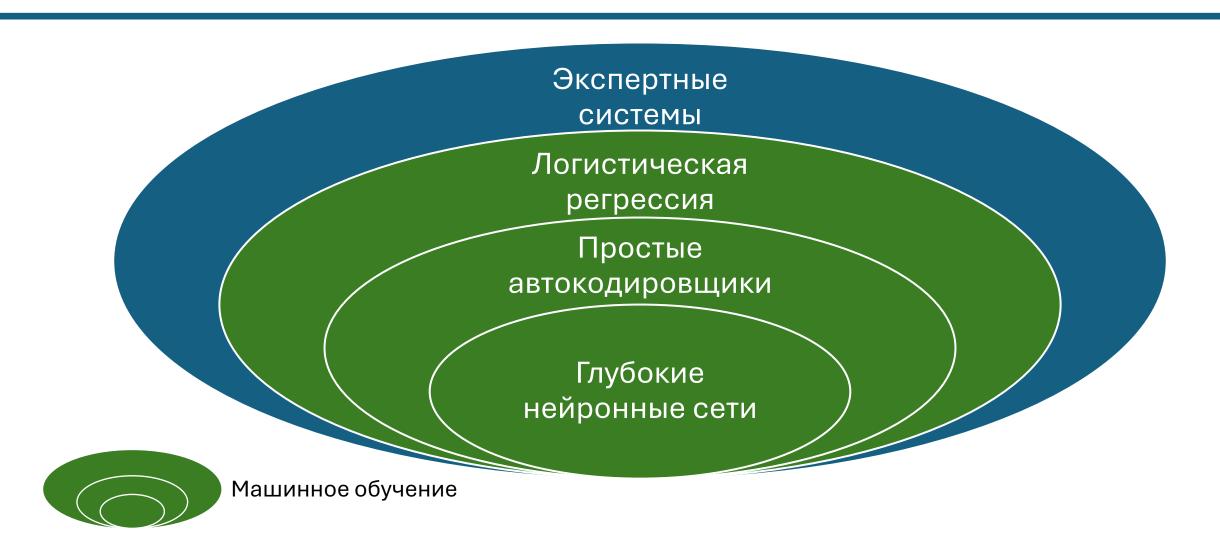
• Гибридный ИИ (Hybrid AI): разработка методов объединения сильных сторон машинного обучения, точных математических моделей и высокопроизводительных вычислений



Высокопроизводительные вычисления

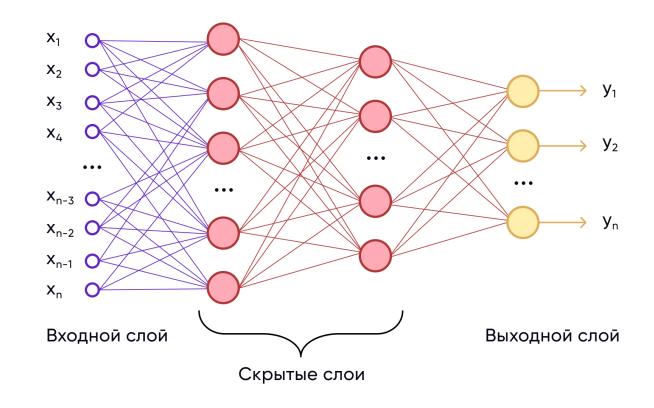


Искусственный интеллект

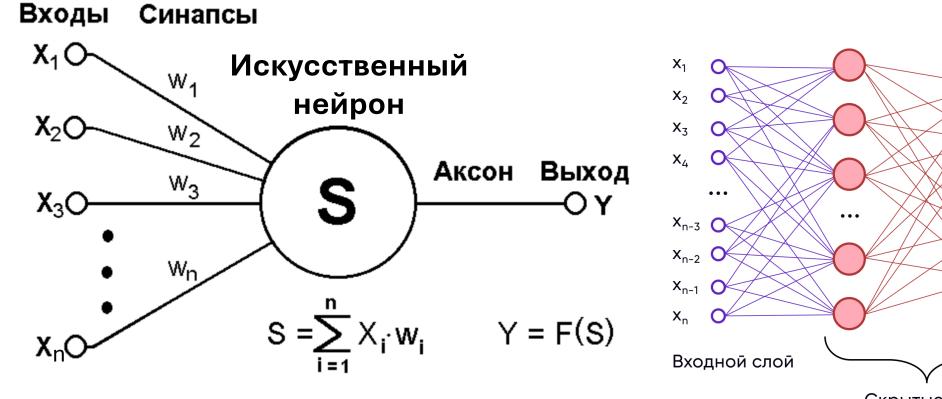


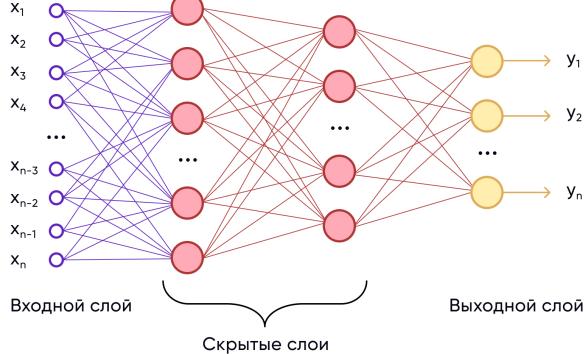
Глубокая нейронная сеть прямого распространения

- + Универсальный инструмент для аппроксимации сложных функций
- + Реальный режим времени
- Необходимы наборы обучающих данных
- Трудности с верификацией



Принцип работы искусственного нейрона



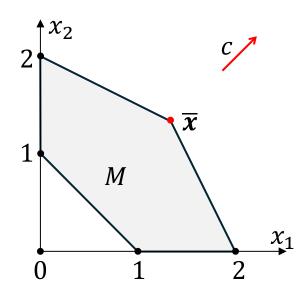


Линейное программирование

- Одна из самых востребованных математических оптимизационных моделей
- Области применения:
 - Экономика
 - Производство
 - Логистика
 - Квантовая физика (теорема Белла)
 - Высокопроизводительные вычисления

$$f(x_1, x_2) = x_1 + x_2 \rightarrow max$$

$$\begin{cases} x_1 + 2x_2 \le 2 \\ 2x_1 + x_2 \le 2 \\ x_1 + x_2 \ge 1 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$



$${\it c}=(1;1)$$
 – градиент целевой функции

Система линейных ограничений и целевая ФУНКЦИЯ

$$\begin{cases} a_{1,1}x_{1} + \dots + a_{1,n}x_{n} \leq b_{1} \\ \dots & \dots & \dots \\ a_{m,1}x_{m} + \dots + a_{m,n}x_{m} \leq b_{m} \\ a_{m+1,1}x_{1} + \dots + a_{m+1,n}x_{m+1} = b_{m+1} \\ \dots & \dots & \dots \\ a_{m+k,1}x_{m+k} + \dots + a_{m+k,n}x_{m+k} = b_{m+k} \end{cases} \begin{cases} \langle a_{1}, x \rangle \leq b_{1} \\ \dots & \dots \\ \langle a_{m}, x \rangle \leq b_{m} \\ \langle a_{m+1}, x \rangle = b_{m+1} \\ \dots & \dots \\ \langle a_{m+k}, x \rangle = b_{m+k} \end{cases}$$

$$\begin{cases} \langle \boldsymbol{a}_{1}, \boldsymbol{x} \rangle \leq b_{1} \\ \dots \\ \langle \boldsymbol{a}_{m}, \boldsymbol{x} \rangle \leq b_{m} \end{cases} \qquad \qquad \begin{cases} \hat{A}\boldsymbol{x} \leq \hat{\boldsymbol{b}} \\ \bar{A}\boldsymbol{x} = \bar{\boldsymbol{b}} \end{cases}$$

$$\langle \boldsymbol{a}_{m+1}, \boldsymbol{x} \rangle = b_{m+1}$$

$$\dots$$

$$\langle \boldsymbol{a}_{m+k}, \boldsymbol{x} \rangle = b_{m+k}$$

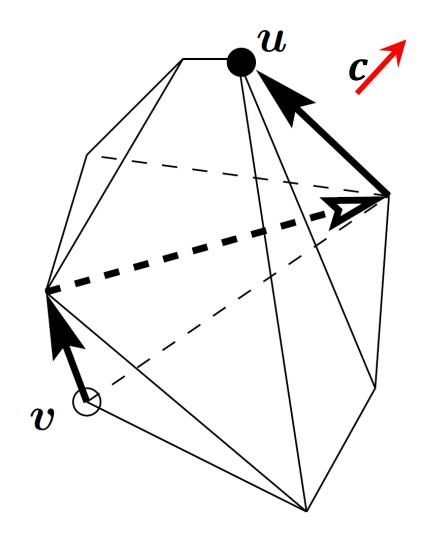
$$f(x_1, \dots, x_n) = c_1 x_1 + \dots + c_n x_n$$

$$f(x) = \langle c, x \rangle$$

$$f(x) = \langle c, x \rangle$$

Симплекс-метод

- Основной метод решения задач ЛП на практике
 - Экспоненциальная сложность
 - Потеря точности
 - Ограниченная масштабируемость (16-32 процессорных узла)



Геометрический подход с использованием НРС и искусственной нейронной сети

Неравенства порождают полупространства

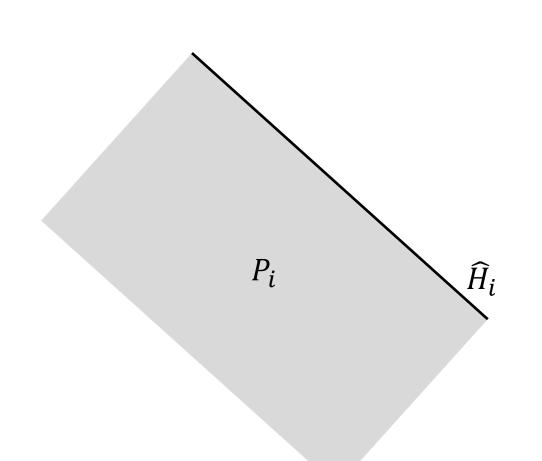
Полупространство:

$$P_i = \{ \boldsymbol{x} \in \mathbb{R}^n | \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle \leq b_i \}$$

Граничная гиперплоскость:

$$\widehat{H}_i = \{ \boldsymbol{x} \in \mathbb{R}^n | \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = b_i \}$$

$$i=1,\ldots,m$$

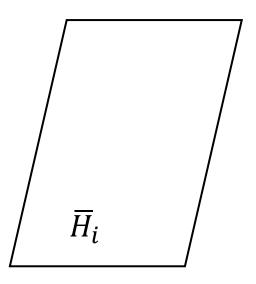


Уравнения порождают опорные гиперплоскости

Опорная гиперплоскость:

$$\overline{H}_i = \{ \boldsymbol{x} \in \mathbb{R}^n | \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = b_i \}$$

$$i = m + 1, ..., m + k$$



Допустимый многогранник

Граничный многогранник:

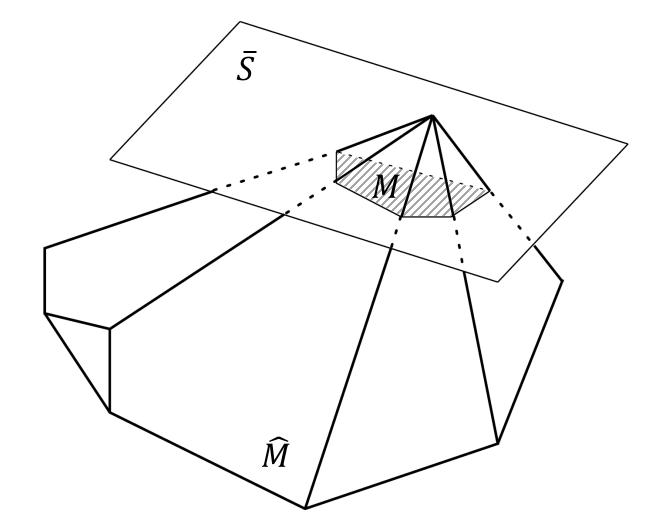
$$\widehat{M} = \bigcap_{i=1}^{m} P_i$$

Опорное полупространство:

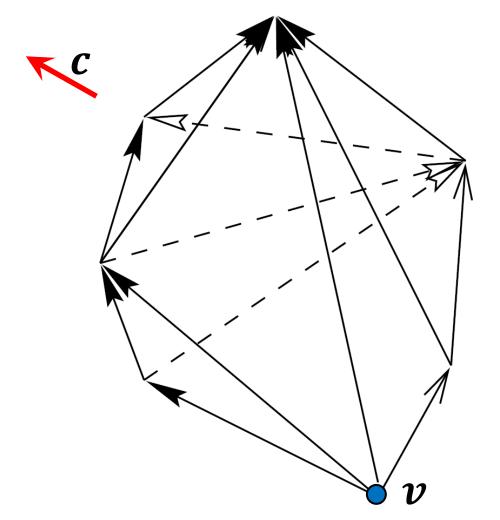
$$\bar{S} = \bigcap_{i=m+1}^{m+k} \bar{H}_i$$

Допустимый многогранник:

$$M = \widehat{M} \cap \overline{S}$$

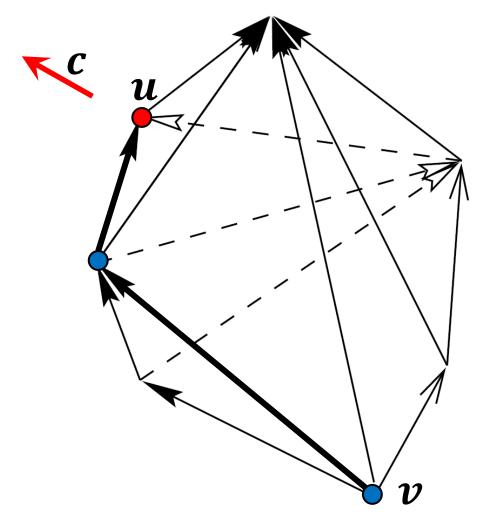


- 1. Находясь в вершине v, выбираем ребро, ведущее к увеличению целевой функции
- 2. Выполняем переход к следующей вершине
- 3. Останавливаемся в вершине, у которой нет ребер, ведущих к увеличению целевой функции



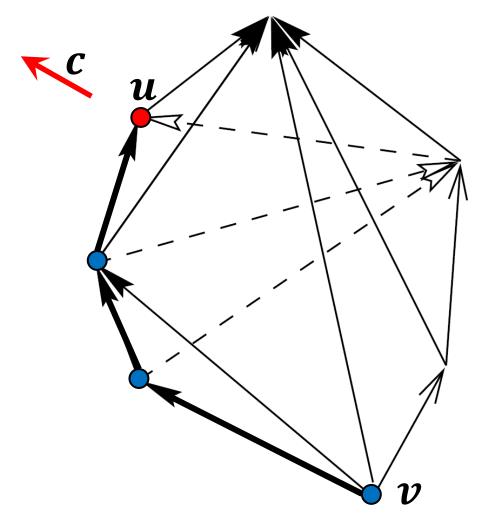
10.07.2025

- 1. Находясь в вершине, выбираем ребро, ведущее к увеличению целевой функции
- 2. Выполняем переход к следующей вершине
- Останавливаемся в вершине, у которой нет ребер, ведущих к увеличению целевой функции
- Стратегии выбора ребра
 - Максимальная конечная вершина



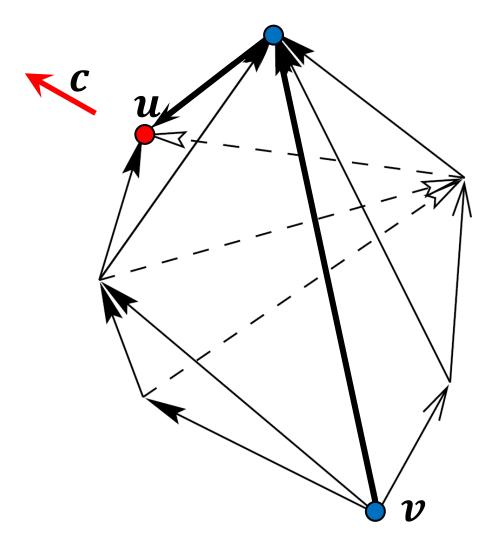
10.07.2025

- 1. Находясь в вершине, выбираем ребро, ведущее к увеличению целевой функции
- 2. Выполняем переход к следующей вершине
- Останавливаемся в вершине, у которой нет ребер, ведущих к увеличению целевой функции
- Стратегии выбора ребра
 - Максимальная конечная вершина
 - Максимальный градиент



10.07.2025

- 1. Находясь в вершине, выбираем ребро, ведущее к увеличению целевой функции
- 2. Выполняем переход к следующей вершине
- 3. Останавливаемся в вершине, у которой нет ребер, ведущих к увеличению целевой функции
- Стратегии выбора ребра
 - Максимальная конечная вершина
 - Максимальный градиент
 - Случайный / первое попавшееся ребро



Как получить ребра, исходящие из вершины $oldsymbol{v}$

Множество номеров граничных гиперплоскостей, проходящих через $oldsymbol{v}$:

$$I_{\boldsymbol{v}} = \{i \in \{1, \dots, m\} | \langle \boldsymbol{a}_i, \boldsymbol{v} \rangle = b_i \}$$

Подмножество из n-k-1 элементов:

$$\tilde{I}_{\boldsymbol{v}} \subseteq I_{\boldsymbol{v}}, \qquad \left| \tilde{I}_{\boldsymbol{v}} \right| = n - k - 1$$

Прямая, образующая ребро с началом в точке $oldsymbol{v}$:

$$L_{v} = \bar{S} \cap \bigcap_{i \in \tilde{I}_{v}} \widehat{H}_{i}$$

Перебор всех вариантов можно сделать с помощью алгоритма TWIDDLE*

*Phillip J. Chase. 1970. Algorithm 382: combinations of M out of N objects [G6]. Commun. ACM 13, 6 (June 1970), 368. https://doi.org/10.1145/362384.362502

Необходимость НРС

• Если через точку $oldsymbol{v}$ проходит k гиперплоскостей, то количество исходящих ребер равно

$$C_k^{n-1} = \frac{k!}{(n-1)! (k-n+1)!}$$

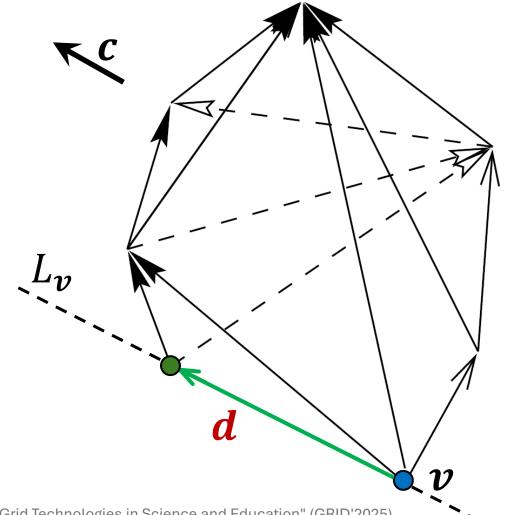
- Эксперименты на вычислительном кластере показали, что алгоритмы выбора оптимального ребра обладают практически неограниченной масштабируемостью
- Чем больше вариантов, тем выше масштабируемость

Для определения конечной точки ребра необходим направляющий вектор **d**

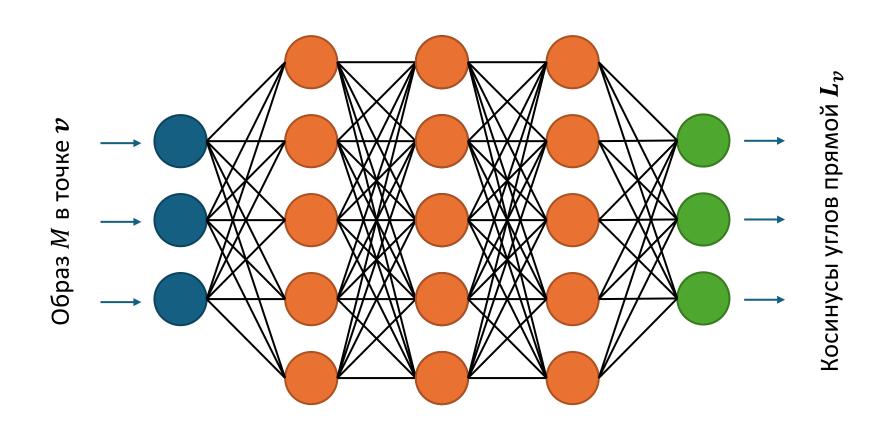
$$L_{v} = \overline{S} \cap \bigcap_{i \in \widetilde{I}_{v}} \widehat{H}_{i} = \left(\bigcap_{i=m+1}^{m+k} \overline{H}_{i}\right) \cap \left(\bigcap_{i \in \widetilde{I}_{v}} \widehat{H}_{i}\right)$$

$$L_{\boldsymbol{v}} = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} = \boldsymbol{v} + \lambda \boldsymbol{d}, \lambda \in \mathbb{R} \}$$

$$d = ?$$



Нейросетевой метод вычисления направляющего вектора $oldsymbol{d}$



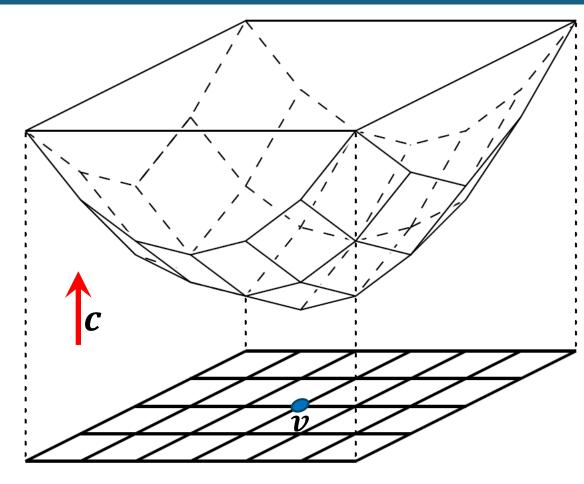
Рецептивное поле Q

- В целевой гиперплоскости H_c формируем рецептивное Q поле в виде гиперкубической решетки точек
- Каждой точке ${m x}$ рецептивного поля ${m Q}$ сопоставляем смещение относительно ${m M}$

$$\beta(\mathbf{x}) = \min_{i} \beta_i(\mathbf{x})$$

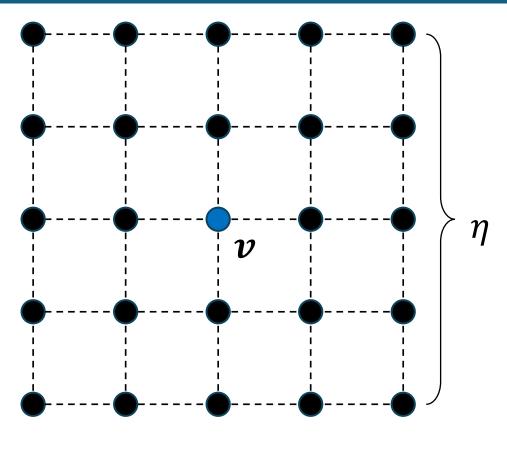
$$\beta_i(\mathbf{x}) = -\frac{\langle \mathbf{a}_i, \mathbf{x} \rangle - b_i}{\langle \mathbf{a}_i, \mathbf{c} \rangle} \|\mathbf{c}\|$$

• Получаем образ G в виде матрицы размерности n-1

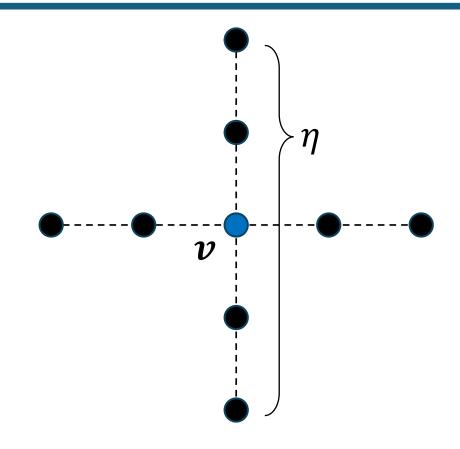


$$H_{c} = \{x \in \mathbb{R}^{n} | \langle c, x - v \rangle = 0\}$$

Переход к крестообразному рецептивному полю

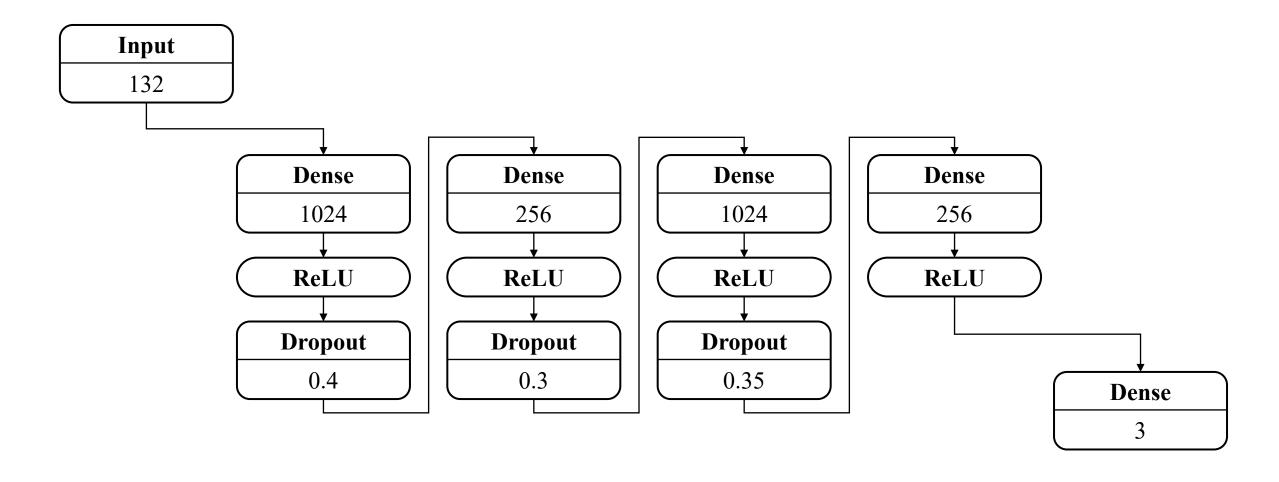


$$|Q_{cube}| = \eta^{n-1}$$



$$|Q_{cross}| = (\eta - 1)n + 1$$

Нейронная сеть для \mathbb{R}^5



Метрики и результаты

• Функция потерь (Bidirectional Mean Absolute Percentage Error):

$$BiMAPE = 100 \frac{1}{K} \sum_{i=1}^{K} \min(\|\widehat{y}_i - y_i\|, \|\widehat{y}_i + y_i\|)$$

• Косинусное подобие (Bidirectional Mean Percentage Cosine Similarity):

$$BiMPCS = 100 \frac{1}{K} \sum_{i=1}^{K} abs \left(\frac{\langle \hat{y}_i, y_i \rangle}{\|\hat{y}_i\| \cdot \|y_i\|} \right)$$

Dataset elements count	171000
Train/validate ratio	80:20
Optimizer	AdamW
Learning rate	0.001
Batch size	256

Точность ($100-BiMAPE$)	95%
Косинусное подобие (<i>BiMPCS</i>)	99.8%

 y_i — точное значение

 $\widehat{y_i}$ – выход нейронной сети

K — количество прецедентов

Спасибо за внимание!