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Abstract—The article presents a new method of linear programming, called the surface movement
method. This method constructs an optimal objective path on the surface of the feasible polytope
from the initial boundary point to the point at which the optimal value of the objective function is
achieved. The optimality of the path means moving in the direction of maximum increase/decrease
in the value of the objective function. A formal description of the algorithm implementing the
surface movement method is described. The convergence theorem of this algorithm is proved.
The presented method can be effectively implemented using a feed forward deep neural network to
determine the optimal direction of movement along the faces of the feasible polytope. To do this, a
multidimensional local image of the linear programming problem is constructed at the point of the
current approximation. This image is fed to the input of the deep neural network, which returns a
vector determining the direction of the optimal objective path on the polytope surface.
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1. INTRODUCTION

The rapid development of big data processing technologies in the last decades [1] caused to the
emergence of optimization mathematical models in the form of large-scale linear programming (LP)
problems [2, 3]. Of particular interest are the LP problems related to the optimization of non-
stationary processes [4]. In a non-stationary LP problem, the constraints and the objective function
can change dynamically during computing its solution [5]. The following optimization problems can
be reduced to non-stationary LP problems: choosing the best high-frequency trading strategies [6],
optimal navigation and control of aircraft [7], dynamic optimization of batch processes [8], logistics and
transportation [9–11], production planning and control [12]. Separately, we can mention optimization
problems that must be solved in real-time mode [13]. Examples are the following: chemical plant control,
energy management, traffic control, multi-point fuel injection system in ICE, autopilot systems, missile
guidance system and others. Typically, such applications have time bounds from a few microseconds to
several milliseconds.

The simplest approach to solving non-stationary optimization problems is that any changes in the
input data is perceived as a separate new problem [4]. This approach may be acceptable when changes
occur relatively slowly, and the optimization problem is solved relatively quickly. However, for large-
scale non-stationary optimization problems, the solution obtained in this way may be far from optimal
due to changes in the input data during computations. In this case, it is necessary to use algorithms
that dynamically correct the computational process in accordance with the changing input data. Thus,
computations with changed data do not start from scratch, but use information obtained in the past. This
approach is applicable to solving optimization problems in real time, provided that the algorithm tracks
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the movement of the optimal point quickly enough. For large-scale LP problems, the latter requirement
makes it urgent to develop scalable methods and parallel algorithms for linear programming.

Up until the present time, one of the most popular ways to solve linear programming problems is
a family of algorithms based on the simplex method [14]. The simplex method is capable of solving
large-scale LP problems by effectively using various types of hyper-sparsity [15]. However, the simplex
method has a number of fundamental drawbacks. First, in the worst case, the simplex method must
visit all the vertices of the polytope that bound the feasible region, which corresponds to exponential
time complexity [16–18]. Second, the use of the simplex method for solving LP problems with a
dimension greater than 50 000 results in a precision loss [19] that cannot be corrected by such compute-
intensive algorithms as affine scaling or iterative refinement [20]. Third, the communication structure
of algorithms based on the simplex method generally has a limited degree of parallelism, which makes
it impossible to efficiently parallelize them on large multiprocessor computing systems with distributed
memory [21, 22]. All of the above makes it difficult to use the simplex method to solve non-stationary
large-scale LP problems in real-time mode.

Another popular approach to solving large LP problems is a class of algorithms based on the interior-
point method [23]. For the first time, this method was described by Dikin in [24, 25]. The interior-point
method is capable of solving LP problems with millions of variables and constraints [26]. The advantage
of the interior-point method is that it is self-correcting and is able to provide a high computational
accuracy. The main disadvantages of the interior-point method are the following. First, an important
subclass of algorithms based on the interior-point method requires some inner point of the feasible
region as an initial approximation. Finding such a point can be reduced to solving an supplementary
LP problem [27]. Another way to find an inner point is to use Fejér approximations [28]. Second, the
interior-point method does not scale well in large cluster computing systems. There are some special
cases when effective parallelization of the interior-point method is possible (see, for example, [29]),
but in general it is not possible to build an efficient parallel implementation of this method for cluster
computing systems. Third, the iterative nature of the interior-point method does not allow predicting
the computation time in advance for a certain LP problem. These disadvantages make it difficult to use
the interior-point method to solve large-scale LP problems in real-time mode.

Artificial neural networks (ANN) [30] are a promising new approach to solving optimization prob-
lems, which attracts a lot of attention. ANNs is a powerful universal tool that is applicable in almost all
problem areas. One of the first applications of ANNs to solving LP problems was the work of Hopfield
and Tank [31]. The Hopfield-Tank ANN consists of two fully connected layers and is recurrent. The
number of neurons in the first layer is equal to the number of LP problem variables. The number of
neurons in the second layer is equal to the number of constraints. The weights and biases of the ANN
are completely determined by the parameters of the LP problem. The output is cyclically fed to the input
of the ANN. The ANN works until an equilibrium state is reached, when the output becomes equal
to the input. This equilibrium state corresponds to a minimum of a special energy function and is a
solution to the LP problem. There are a lot of works that extend the Hopfield–Tank approach (see, for
example, [32–36]). The main disadvantage of this approach is that it is impossible to predict the number
of ANN work cycles required to achieve the equilibrium state. This makes it impossible to use such
recurrent networks to solve large-scale LP problems in real-time mode. For this purpose, feed forward
deep neural networks seem more promising. The structure and parameters of such networks, as a rule,
do not depend on the particular input parameters of the problem. The solution is obtained in one pass
with a fixed network operation time, which makes it possible to use them to solve problems in real-
time mode. One of the important classes of ANNs are convolutional neural networks [37]. This class
is of special interest for image processing. In recent paper [38], a new method for constructing images
of multidimensional LP problems was proposed, which makes it possible to use feed forward neural
networks, including convolutional ones, to solve them. It should be noted that deep neural networks
require training on a large number of labeled datasets, which can be efficiently performed on GPUs [39].
In paper [40], the apex method is proposed for solving LP problems, which makes it possible to construct
a path on the surface of the feasible polytope in the direction of maximum increase/decrease in the value
of the objective function, leading to the optimum point. The apex method belongs to the class of iterative
projection-type methods, which are characterized by a low linear convergence rate, which makes them
unacceptable for real-time mode. However, the apex method allows you to construct a labeled dataset
for training deep neural network.
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This article presents a new method for solving LP problems, called the surface movement method.
This method is intended for using feed forward ANNs, including convolutional neural networks. The
rest of the paper is organized as follows. Section 2 presents the theoretical background on which the
surface movement method is based. Section 3 contains a description of the surface movement method
and a proof of the convergence theorem. In Section 4, we discuss the strengths and weaknesses of the
proposed method, as well as reveal the ways of its practical implementation based on the synthesis of
supercomputer and neural network technologies. In Conclusions, we summarize the results and provide
further research directions. A summary of the main symbols used in the paper is presented in Appendix.

2. THEORETICAL BACKGROUND

This section presents a theoretical background on which the surface movement method is based. We
consider a LP problem in the following form

x̄ = arg max
x∈Rn

{〈c,x〉 |Ax � b} , (1)

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n, m > 1, c �= 0. Here 〈·, ·〉 stands for the dot product of two vectors.

We assume that the constraint x � 0 is also included in the matrix inequality Ax � b in the form of
−x � 0. Denote by P = {1, · · · ,m} the set of indexes numbering the rows of the matrix A. The linear
objective function of the problem (1) has the form f(x) = 〈c,x〉 . In this case, the vector c is the gradient
of the objective function f(x).

Let ai ∈ R
n denote a vector representing the ith row of the matrix A. We assume that ai �= 0 for

all i ∈ P. Denote by Ĥi a closed half-space defined by the inequality 〈ai,x〉 � bi, and by Hi—the
hyperplane bounding it:

Ĥi = {x ∈ R
n|〈ai,x〉 � bi} ; (2)

Hi = {x ∈ R
n|〈ai,x〉 = bi} . (3)

Let us define a feasible polytope

M =
⋂

i∈P
Ĥi, (4)

representing the feasible region of LP Problem (1). Note that M , in this case, is a closed convex set. We
assume that M is bounded, and M �= ∅, i.e., LP Problem (1) has a solution. Denote by Γ(M) the set of
boundary points of the polytope M1.

Proposition 1. Let M be the feasible polytope of LP Problem (1), defined by equation (4). Let
Vε(u) denotes the ε-neighborhood of the point u in R

n. Then,

∀u ∈ Γ(M) ∃ε > 0 : ∀w ∈ Vε(u) ∩ Γ(M)∃i′ ∈ P : u,w ∈ Hi′ ,

i.e., for any point u ∈ Γ(M), there exists ε > 0 such that for each boundary point w belonging to
the ε-neighborhood of the point u, there exists at least one i′ ∈ P such that u,w ∈ Hi′ .

Proof. Fix an arbitrary point u ∈ Γ(M). Define

Pu = { i ∈ P|u ∈ Hi} . (5)

In other words, Pu is the set of indices of all hyperplanes Hi to which the point u belongs. Denote
P\u = P\Pu, i.e., P\u is the set of indices of all hyperplanes Hi to which the point u does not belong.
Define δ = min

{
dist(u,Hi)| i ∈ P\u

}
, where dist(u,Hi) stands for the Euclidean distance from the

point u to the hyperplane Hi
2. By definition, δ > 0. Take ε satisfying the condition 0 < ε < δ. Then, for

any w ∈ Vε(u) ∩ Γ(M), the following condition holds

∀i ∈ P\u : w /∈ Hi.

1If M ⊂ R
n, then a point x ∈ R

n is a boundary point of M if every neighborhood of x contains at least one point in M and
at least one point not in M .

2In this case, dist(u, Hi) =
〈ai,u〉−bi

||ai||
.
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Since w is a boundary point, it follows that there exists an i′ ∈ Pu such that w ∈ Hi′ . By virtue of (5),
the following condition also holds u ∈ Hi′ . �

Definition 1. The objective projection of a point z ∈ R
n onto the hyperplane Hi is a point γi(z) ∈

R
n ∪ {∞} defined by the equation

γi(z) =

{
L(z) ∩Hi, if 〈ai, c〉 �= 0;

∞, if 〈ai, c〉 = 0,
(6)

where L(z) is the line passing through the point z parallel to the vector c:

L(z) = {y ∈ R
n|y = z+ λc, λ ∈ R} . (7)

In other words, if the vector c is not parallel to the hyperplane Hi, then the objective projection of the
point z onto the hyperplane Hi is the intersection point of this hyperplane with the line passing through
the point z parallel to the vector c. In the case when the vector c is parallel to the hyperplane Hi, the
objective projection is the point at infinity.

The following proposition provides an equation for calculating the objective projection γi(z) of point
z onto hyperplane Hi.

Proposition 2. Let 〈ai, c〉 �= 0, i.e., the vector c is not parallel to the hyperplane Hi. Then,

γi(z) = z− 〈ai, z〉 − bi
〈ai, c〉

c. (8)

Proof. In accordance with (6) and (7), the following equation holds for some λ ∈ R:

γi(z) = z+ λc (9)

On the other hand, in accordance with (3), the following equation holds

〈ai,γi(z)〉 = bi. (10)

Substituting the right-hand side of equation (9) instead of γi(z) into equation (10), we obtain
〈ai, z + λc〉 = bi. It follows that

λ = −〈ai, z〉 − bi
〈ai, c〉

. (11)

Substituting the right-hand side of equation (11) instead of λ into equation (9), we obtain

γi(z) = z− 〈ai, z〉 − bi
〈ai, c〉

c.

�

Definition 2. The objective bias of the point z ∈ R
n relative to the hyperplane Hi is the scalar

quantity βi(z), calculated by the equation

βi(z) = −〈ai, z〉 − bi
〈ai, c〉

||c|| . (12)

For brevity’s sake, everywhere below, we will use the term “bias”, meaning by this “objective bias”.
Denote

ec = c/||c||. (13)

Then, equation (8) can be rewritten as follows:

γi(z) = z+ βi(z)ec, (14)

which is equivalent to βi(z)ec = γi(z)− z. Taking into account (13), it follows

|βi(z)| = ||γi(z)− z|| . (15)

Thus, |βi(z)| is the distance from the point z to its objective projection onto the hyperplane Hi.
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Definition 3. The objective hyperplane Hc(z) passing through the point z is the hyperplane defined
by the following equation

Hc(z) = {x ∈ R
n|〈c,x〉 = 〈c, z〉} . (16)

The following proposition holds.
Proposition 3. Fix an arbitrary point z ∈ R

n. Then, for any points z′, z′′ ∈ Hc(z), z
′ �= z′′, the

following statement is true for all i ∈ P:
〈
c,γi(z

′)
〉
<

〈
c,γi(z

′′)
〉
⇔ βi(z

′) < βi(z
′′).

Proof. Since z′, z′′ ∈ Hc(z), and c is normal to the hyperplane Hc(z), the following two equations
hold 〈c, z′ − z〉 = 0;

〈c, z′′ − z〉 = 0. Hence,
〈
c, z′′

〉
= 〈c, z〉 =

〈
c, z′

〉
. (17)

Sequentially using (14), (17), and (13), we obtain the following chain of equivalent inequalities:
〈
c,γi(z

′)
〉
<

〈
c,γi(z

′′)
〉
⇔

〈
c, z′ + βi(z

′)ec
〉
<

〈
c, z′′ + βi(z

′′)ec
〉

⇔
〈
c, βi(z

′)ec
〉
<

〈
c, βi(z

′′)ec
〉
⇔

〈
c, βi(z

′)c/ ||c||
〉
<

〈
c, βi(z

′′)c/ ||c||
〉

⇔ βi(z
′)

||c|| 〈c, c〉 < βi(z
′′)

||c|| 〈c, c〉 ⇔ βi(z
′) < βi(z

′′).

�

The following definition of a recessive half-space is adopted by us from the paper [40].

Definition 4. The half-space Ĥi is called recessive, if

∀x ∈ Hi, ∀λ > 0 : x+ λc /∈ Ĥi. (18)

The geometric interpretation of this definition is as follows: the ray parallel to the vector c coming from
any point of the hyperplane bounding the recessive half-space has no points in common with this half-
space, except for the starting one.

The following condition is both necessary and sufficient for the half-space Ĥi to be recessive [40]:

〈ai, c〉 > 0. (19)

A recessive half-space has the following properties.

Property 1. Let the half-space Ĥi be recessive. Then, any line parallel to the vector c intersects
the hyperplane Hi at a single point.

This property directly follows from the fact that the hyperplane Hi bounding the recessive half-space
Ĥi cannot be parallel to the vector c by Definition 4.

Property 2. Let the half-space Ĥi be recessive. Then,

x ∈ Ĥi ⇔ βi(x) � 0. (20)

Proof. First, assume that x ∈ Ĥi. Then, according to (2), the following inequality holds 〈ai,x〉 −
bi � 0. By virtue of (12), we have

βi(x) = −〈ai,x〉 − bi
〈ai, c〉

||c|| . (21)

Taking into account (19), we obtain x ∈ Ĥi ⇒ βi(x) � 0.

Now, suppose that βi(x) � 0. According to (12), this means that

〈ai,x〉 − bi
〈ai, c〉

||c|| � 0.

Given (19), we obtain from here 〈ai,x〉 − bi � 0. According to (2), it follows that x ∈ Ĥi. Thus,

βi(x) � 0 ⇒ x ∈ Ĥi.
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�

Define

I = {i ∈ P |〈ai, c〉 > 0} , (22)

i.e., I represents a set of indices for which the half-space Ĥi is recessive. Since the feasible polytope M
is a bounded set, we have

I �= ∅. (23)

Denote

M̂ =
⋂

i∈I
Ĥi. (24)

Obviously, M̂ is a convex, closed, unbounded polytope. Let us call it a recessive polytope. By (4)
and (22), it follows that

M ⊂ M̂. (25)

Let Γ(M̂) denote the set of boundary points of the recessive polytope M̂ . According to Proposition 3
in [40], we have x̄ ∈ Γ(M̂ ), i.e., the solution of LP Problem (1) lies on the boundary of the recessive
polytope M̂ .

Proposition 4. Let M̂ be the recessive polytope defined by equation (24). Then, for any point
u ∈ Γ(M̂ ), there exists ε > 0 such that for any boundary point w belonging to the ε-neighborhood
Vε(u) of the point u, there is i′ ∈ I for which u,w ∈ Hi′ is valid, i.e.,

∀u ∈ Γ(M̂) ∃ε > 0 : ∀w ∈ Vε(u) ∩ Γ(M̂) ∃i′ ∈ I : u,w ∈ Hi′ .

Proof. The proof is similar to the proof of Proposition 1. �

Definition 5. The objective projection of the point z ∈ R
n onto the boundary Γ(M̂) of the recessive

polytope M̂ is the point γ̂(z) calculated by the equation γ̂(z) = L(z) ∩ Γ(M̂), where L(z) is the line
passing through the point z parallel to the vector c:

L(z) = {y ∈ R
n|y = z+ λc, λ ∈ R} .

The scalar quantity β̂(z) ∈ R satisfying the equation

γ̂(z) = z+ β̂(z)c (26)

will be called the bias of the point z relative to the boundary of the recessive polytope M̂ .
Note that the correctness of this definition is based on property 1. The following proposition provides

an equation for calculating the objective projection onto the boundary of the recessive polytope. Figure 1
illustrates the proof of this proposition.

Proposition 5. Let an arbitrary point z ∈ R
n be given. Put

i′ = argmin {βi(z) |i ∈ I } . (27)

Then,

γ̂(z) = γi′(z). (28)

In other words, the objective projection of the point z onto the boundary of the recessive
polytope M̂ coincides with the projection of this point onto the hyperplane Hi′ , which has the
minimum bias relative to z.

Proof. Fix an arbitrary point z ∈ R
n. According to Definition 5, let us construct a line parallel

to the vector c, which passes through the point z: L = {y ∈ R
n|y = z+ λc, λ ∈ R} . The following

equation holds: γ̂(z) = L ∩ Γ(M̂). In accordance with property 1, for any i ∈ I , the line L intersects the
hyperplane Hi at only one point, which we denote as yi: L ∩Hi = {yi} . Define Y =

⋃
i∈I

{yi} , i.e., Y

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 10 2024
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c
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Fig. 1. Illustration to proof of Proposition 5.

is the set of points at which the line L intersects the boundaries of recessive half-spaces. According to
Definition 1, the following conditions hold

∀i ∈ I : γi(z) = yi, (29)

and
∀i ∈ I : yi ∈ Hi. (30)

By virtue of (24), the following is also true γ̂(z) ∈ Y. This means that there is i′ ∈ I such that

γ̂(z) = γi′(z). (31)

Let us show that i′ ∈ argmin{βi(z)|i ∈ I}. Assume the opposite, namely that βi′(z) > min{βi(z)|i ∈
I}. Then, there exists an i′′ ∈ I such that

βi′′(z) < βi′(z). (32)

By (14) and (29),

yi′ = z+ βi′(z)ec; yi′′ = z+ βi′′(z)ec.

Hence,

yi′ = yi′′ + (βi′(z)− βi′′(z)) ec,

which, by virtue of (32) and (13) is equivalent to

yi′ = yi′′ +
|βi′′(z) − βi′(z)|

||c|| c. (33)

In accordance with (18) and (30), it follows from (33) that yi′ /∈ Ĥi′′ . This means that yi′ /∈ M̂. Taking
into account (29) and (31), it follows that γ̂(z) /∈ M̂. We have thus reached a contradiction to Definition
5. �

The following proposition provides an equation for calculating the bias of a point relative to the
boundary of a recessive polytope.

Proposition 6. Let an arbitrary point z ∈ R
n be given. Then,

β̂(z) =
〈c, γ̂(z) − z〉

||c||2
. (34)
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Algorithm 1 Surface movement method

Require: ∀z ∈ R
n : Hc(z) = {x ∈ R

n|〈c,x− z〉 = 0}; Ĥi = {x ∈ R
n|〈ai,x〉 � bi}; M̂ =

⋂
i∈I

Ĥi

1: input u(0)

2: assert u(0) ∈ M ∩ Γ(M̂)

3: k := 0

4: r := 0.1

5: D(0) := Hc(u
(0)) ∩ Vr(u

(0)) � Vr(u
(0)) is r-neighborhood of point u(0)

6: v(0) := argmax{β̂(z) | z ∈ D(0)}
7: w(0) := γ̂(v(0))

8: assert ∃i ∈ I : w(0),u(0) ∈ Hi ∩ Γ(M̂) � If this fails, reduce r

9: while 〈c,w(k) − u(k)〉 > εf

10: assert ∃i ∈ I : w(k),u(k) ∈ Hi ∩ Γ(M̂) � If this fails, reduce r

11: d(k) := w(k) − u(k)

12: L(k) := {u(k) + λd(k) | λ ∈ R>0}
13: u(k+1) := argmax{||x− u(k)|| | x ∈ L(k) ∩ Γ(M)}
14: D(k+1) := Hc(u

(k+1)) ∩ Vr(u
(k+1))

15: v(k+1) := argmax{β̂(z) | z ∈ D(k+1)}
16: w(k+1) := γ̂(v(k+1))

17: k := k + 1

18: end while

19: output u(k)

20: stop

Proof. In accordance with (26), the points γ̂(z) and z are on the normal to the hyperplane Hc(z).
Therefore, the point z ∈ Hc(z) is an orthogonal projection of the point γ̂(z) onto the hyperplane Hc(z),
and taking into account (16), it can be calculated by the following known equation

z = γ̂(z)− 〈c, γ̂(z)− z〉
||c||2

c. (35)

We can rewrite this as γ̂(z) = z+ 〈c,γ̂(z)−z〉
||c||2 c. Comparing this with (26), we obtain

β̂(z) =
〈c, γ̂(z) − z〉

||c||2
.

�

3. SURFACE MOVEMENT METHOD

The surface movement method constructs, on the surface of the feasible polytope, a path from an
arbitrary boundary point u(0) ∈ M ∩ Γ(M̂) to a point x̄, which is a solution to LP Problem (1). Moving
along the surface of the recessive polytope is performed in the direction of the greatest increase in the
value of the objective function. The path constructed as a result of such a movement will be called the
optimal objective path. The implementation of the surface movement method is presented in the form of
Algorithm 1.
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c

u(k+1)

u(k)

d(k)

w(k)

v(k)

M̂

Hc(u(k))

Fig. 2. Surface movement method.

Let us give brief comments on this implementation. Step 1 reads the initial approximation of u(0). It
can be an arbitrary boundary point of a recessive polytope M̂ satisfying the condition

u(0) ∈ M ∩ Γ(M̂),

which is checked in Step 2. Step 3 assigns the iteration counter k the value 0. Step 4 sets the value
of the parameter r. Step 5 builds an n-dimensional disk D(0), which is the intersection of the objective
hyperplane Hc

(
u(0)

)
passing through the point u(0), and the n-dimensional ball Vr

(
u(0)

)
of a small

radius r with the center at the point u(0). Step 6 calculates the point v(0) ∈ D(0), having the maximum
bias relative to the boundary of the recessive polytope M̂ . The bias β̂(z) is calculated by equation (34).
The objective projection γ̂(z), in equation (34), is calculated using equations (27), (28), and (8). Step 7
calculates the point w(0), which is the objective projection of the point v(0) on the boundary of the
recessive polytope. Step 8 checks that there exists a recessive half-space Ĥi such that the boundary
points w(0) and u(0) lie on the hyperplane Hi bounding this half-space. This is necessary so that
the movement is carried out on the surface of the recessive polytope, and not through its interior. If
this requirement is not met, it is necessary to reduce the radius r of the n-dimensional ball Vr

(
u(0)

)
.

A suitable r exists by virtue of Proposition 4. Steps 9–18 implement the main loop of the surface
movement method, the geometric interpretation of which is shown in Fig. 2. This loop is executed
while the following condition is true:

〈
c,w(k) − u(k)

〉
> εf , (36)

where εf is a small positive parameter. Step 10 checks that there exists a recessive half-space Ĥi

such that the boundary points w(k) and u(k) lie on the hyperplane Hi bounding this half-space. If this
requirement is not met, it is necessary to reduce the radius r of the n-dimensional ball Vr

(
u(k)

)
. Step 11

calculates the vector d(k), which determines the movement direction. Step 12 builds the ray L(k) parallel
to the vector d(k) with the initial point u(k). Step 13 determines the next approximation u(k+1) as the
point belonging to the ray L(k), which is lying on the boundary of the recessive polytope M as far as
possible from the point u(k). Step 14 builds the hyperdisk D(k+1) of radius r with the center at the
point u(k+1), lying on the hyperplane Hc

(
u(k+1)

)
. Step 15 finds the point v(k+1) on the hyperdisk D(k+1)

that has the maximum bias. Step 16 calculates the point w(k+1), which is the objective projection of
the point v(k+1) onto the boundary of the recessive polytope M̂ . In Step 17, the iteration counter k is
incremented by 1. Step 18 passes the control to the beginning of the while loop. Step 19 outputs the
last approximation u(k) as a result. Step 20 terminates the algorithm.

Note that by construction of Algorithm 1, for any k the following condition holds

u(k) ∈ M ∩ Γ(M̂ ), (37)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 10 2024



5070 OLKHOVSKY, SOKOLINSKY

i.e., all points of the sequence
{
u(k)

}
generated by Algorithm 1 simultaneously lie on the boundary of

the feasible polytope M and on the boundary of the recessive polytope M̂ . Also, it follows from (36) that
〈
c,u(k)

〉
<

〈
c,w(k)

〉
. (38)

In addition, the following inequality holds
〈
c,w(k)

〉
�

〈
c,u(k+1)

〉
. (39)

The following lemma guarantees that Algorithm 1 stops in a finite number of iterations.

Lemma 1. Let the feasible polytope M of the problem (1) be a bounded nonempty set. Then,
the sequence of points

{
u(k)

}
generated by Algorithm 1 is finite for any εf > 0.

Proof. Assume the opposite, that is, Algorithm 1 generates the infinite sequence of points
{
u(k)

}
.

But then, by virtue of (38) and (39), we obtain the infinite strictly monotonically increasing numerical
sequence

{〈
c,u(k)

〉}∞
k=0

:
〈
c,u(k)

〉
<

〈
c,u(k+1)

〉
. (40)

Since, by the lemma condition, the feasible polytope M is a nonempty bounded set, there is a solution
x̄ to the problem LP (1). By virtue of (37), the following inequality holds

〈
c,u(k)

〉
� 〈c, x̄〉 for all

k = 0, 1, 2, . . . This means that the sequence
{〈

c,u(k)
〉}∞

k=0
is bounded from above. According to the

monotone convergence theorem, a monotonically increasing bounded from above sequence converges
to its supremum, i.e., there exists k′ ∈ N such that

∀k > k′ :
〈
c,u(k+1)

〉
−

〈
c,u(k)

〉
< εf .

By (39) it follows that

∀k > k′ :
〈
c,w(k)

〉
−

〈
c,u(k)

〉
< εf .

This is equivalent to

∀k > k′ :
〈
c,w(k) − u(k)

〉
< εf .

We obtain a contradiction with the condition of the while loop (Step 9 of Algorithm 1). �

The following theorem shows that, for a sufficiently small εf , the sequence of points
{
u(k)

}
calculated

by Algorithm 1 converges to the solution x̄ of LP Problem (1).

Theorem 7 (Convergence of Algorithm 1). Let the feasible polytope M of the problem (1) be a
bounded nonempty set. Let x̄ be a solution of LP Problem (1). Let {εη}∞η=1 be a monotonically
decreasing sequence of positive numbers converging to zero:

lim
η→∞

εη = 0. (41)

Denote by u(Kη) the final point generated by Algorithm 1 with εf = εη (it exists by virtue of
Lemma 1). Then, there exists η̄ ∈ N such that, for all η � η̄, the following equation holds

〈
c,u(Kη)

〉
= 〈c, x̄〉 .

Proof. Let us show that the sequence
{〈

c,u(Kη)
〉}∞

η=1
is monotonically increasing. Indeed, it follows

from (38) and (39) that

∀k′ � k′′ :
〈
c,u(k′)

〉
�

〈
c,u(k′′)

〉
. (42)
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Fig. 3. Illustration to proof of Theorem 7.

By the condition of the theorem, εη � εη+1. Therefore, by construction of Algorithm 1, Kη � Kη+1.
Comparing this with (42), we obtain

〈
c,u(Kη)

〉
�

〈
c,u(Kη+1)

〉
,

i.e., the sequence
{〈

c,u(Kη)
〉}∞

η=1
is monotonically increasing. Obviously, this sequence is bounded

from above by the value of 〈c, x̄〉. Hence, it has a finite limit lim
η→∞

〈
c,u(Kη)

〉
= f̄ . Algorithm 1, within

each iteration, passes3 one face/edge of the recessive polytope M̂ in the direction of maximizing the
value of the objective function. In this case, each face/edge is traversed no more than once, since
the polytope M̂ is a convex set. This means that there exists η̄ ∈ N such that for all η � η̄ the
following equation holds: u(Kη) = u(Kη̄), and

〈
c,u(Kη)

〉
= f̄ . By construction of Algorithm 1, taking

into account (41), this is possible only when
〈
c,w(Kη̄) − u(Kη̄)

〉
= 0. (43)

Let us show that, in this case,
〈
c,u(Kη̄)

〉
= 〈c, x̄〉 , i.e., the point u(Kη̄) is a solution of LP Problem (1).

Denote u′ = u(Kη̄), and assume the opposite, namely that there exists a point

u′′ ∈ M (44)

such that 〈c,u′′〉 > 〈c,u′〉 . This is equivalent to
〈
c,u′′ − u′〉 > 0. (45)

Figure 3 illustrates the following part of the proof.
Based on Definition 3, we can calculate the orthogonal projection p of the point u′′ onto the objective

hyperplane Hc (u
′) passing through the point u′:

p = u′′ − 〈c,u′′ − u′〉
||c||2

c. (46)

Note that ∣∣∣∣p− u′∣∣∣∣ �= 0, (47)

since otherwise, according to Definition 4, the point u′′ cannot belong to the recessive polytope M̂ ,
which contradicts (44). Choose r ∈ R satisfying the condition

r > 0, (48)

3The passage of a polytope face/edge is understood as movement inside a linear manifold of dimension k in the presence of
k degrees of freedom.
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for which there is i′ ∈ I such that
γ̂(v′),u′ ∈ Hi′ ∩ Γ(M), (49)

where

v′ = u′ +
r

||p− u′||(p− u′). (50)

This is possible by virtue of Proposition 1. Without loss of generality, we can assume that r satisfies all
asserts in the case when εf = εη̄. Thus,

v′ ∈ D(Kη̄), (51)

where DKη̄ is the disk constructed in Step 14 of Algorithm 1 with k = Kη̄ − 1. Note that

i′ = argmin
{
βi(v

′) |i ∈ I
}
,

since otherwise γ̂(v′) /∈ Hi′ , which contradicts (49). According to Proposition 5, it follows that

γ̂(v′) = γi′(v
′). (52)

Set w′ = γ̂(v′). Taking into account (52), the following equation holds w′ = γi′(v
′). Using Proposi-

tion 2, we obtain

w′ = v′ − 〈ai′ ,v′〉 − bi′

〈ai′ , c〉
c. (53)

Since u′ ∈ Hi′ , it follows from (3) that
〈
ai′ ,u

′〉 = bi′ . (54)

Therefore, (53) can be rewritten in the form

w′ = v′ − 〈ai′ ,v′〉 − 〈ai′ ,u′〉
〈ai′ , c〉

c.

Substituting the right side of equation (50) instead of v′, we obtain from here

w′ = u′ +
r

||p− u′||(p− u′)−

〈
ai′ ,u

′ + r
||p−u′||(p− u′)

〉
− 〈ai′ ,u′〉

〈ai′ , c〉
c.

which is equivalent to

w′ = u′ +
r

||p− u′|| (p− u′)−

〈
ai′ ,

r
||p−u′||(p− u′)

〉

〈ai′ , c〉
c. (55)

According to (2), we have

Ĥi′ = {x ∈ R
n|〈ai′ ,x〉 � bi′} . (56)

Using (54), equation (56) can be rewritten in the form

Ĥi′ =
{
x ∈ R

n
∣∣〈ai′ ,x〉 �

〈
ai′ ,u

′〉} . (57)

From (44), it follows that u′′ ∈ Ĥi′ . Comparing this with (57), we obtain 〈ai′ ,u′′〉 � 〈ai′ ,u′〉 , which is
equivalent to

〈
ai′ ,u

′ − u′′〉 � 0. (58)

Since the half-space Ĥi′ is recessive, according to Proposition 1 in [40], the following inequality holds

〈ai′ , c〉 > 0. (59)

By virtue of (55) and (46) we have

〈
c,w′ − u′〉 = r

〈c,p− u′〉 − 〈ai′ ,p−u′〉
〈ai′ ,c〉

||c||
||p− u′||
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=
r ||c||

||p− u′|| 〈ai′ , c〉

(
−
〈
ai′ ,u

′′ − 〈c,u′′ − u′〉
||c||2

c− u′
〉)

=
r ||c||

||p− u′|| 〈ai′ , c〉

(〈
ai′ ,u

′ − u′′〉+ 〈c,u′′ − u′〉 〈ai′ , c〉
||c||2

)
.

According to (48), (47), (59), (58), and (45), it follows that 〈c,w′ − u′〉 > 0. Recalling that u′ = u(Kη̄),
we rewrite the last inequality in the form

〈
c,w′ − u(Kη̄)

〉
> 0. (60)

Taking in account Proposition 3, by construction of Algorithm 1 (steps 15 and 16), we have
〈
c,w(Kη̄)

〉
�

〈c,w′〉 . Comparing this with (60), we obtain
〈
c,w(Kη̄) − u(Kη̄)

〉
> 0. We have thus reached a contra-

diction with (43). �

4. DISCUSSION

This section discusses the strengths and weaknesses of the proposed method, as well as reveals the
ways of its practical implementation based on the synthesis of high-performance computing and neural
network technologies.

First of all, let us look at the issue concerning the implementation of the Algorithm 1 in the form of
a computer program. Steps 15 of Algorithm 1 should calculate the point of hyperdisk D(k+1) having
the maximum bias. This task can be solved using the approach described in article [40]. It is based on
the pseudoprojection operation, which is a generalization of the metric projection to a convex closed set.
The idea of the solution is as follows. For the current approximation u, let us find the numbers of all
hyperplanes passing through u:

∀i ∈ H : 〈ai,u〉 = bi; ∀i ∈ P\H : 〈ai,u〉 �= bi.

Let H be the set of all subsets of the set H, except the empty set. This set defines a set of linear manifolds
of the form

V (S) =
⋂

i∈S
Hi,

where S ∈ H. Then, any face Q of the polytope M containing u can be represented as follows:

Q = M ∩ V (S)
with S ∈ H. Given the gradient c of the objective function, we can find the unit direction vector of
maximum increase of the objective function for each face using the pseudoprojection operation. The
face with the maximum increment will provide us with the direction vector d that will allow us to
find the next approximation (see Fig. 2). We plan to describe this method in detail in a separate
paper. However, we already have its parallel implementation in C++ called AlFaMove (Along Faces
Movement) algorithm. Using AlFaMove, we conducted large-scale computational experiments on
a cluster computing system, which showed high scalability of this algorithm. The source codes of
AlFaMove are freely available on GitHub at https://github.com/leonid-sokolinsky/AlFaMove. All used
test problems in MTX format [41] are available at https://github.com/leonid-sokolinsky/Set-of-LP-
Problems.

The drawback of the AlFaMove algorithm is that its time complexity can be estimated as O(2m),
where m is the number of constraints of the LP problem. We see the following way to solve this
issue involving an artificial neural network. Using the approach described in paper [38], we replace the
hyperdisk D(k+1) in Algorithm 1 with a set of points called the receptive field. We map each point of the
receptive field to its bias relative to the boundary of the feasible polytope. As a result, we obtain a matrix
of dimension (n− 1), which is a local image of the LP problem. The locality of the image means that we
obtain a visual representation of the surface not of the entire feasible polytope, but only of some part of
it in the neighborhood of the point of the current approximation. This image is fed to the input of a pre-
trained feed forward neural network, which outputs the vector d indicating the direction of movement on
the surface of the feasible polytope towards the maximum increase in the value of the objective function.
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Algorithm 2 LP method using DNN

Require: Ĥi = {x ∈ R
n|〈ai,x〉 � bi}; M̂ =

⋂
i∈I

Ĥi

1: input u(0)

2: assert u(0) ∈ M ∩ Γ(M̂)

3: k := 0

4: D(0) := G(u(0))

5: d(0) := DNN(D(0))

6: while d(k) �= 0

7: L(k) = {u(k) + λd(k) | λ ∈ R>0}
8: u(k+1) := argmax{||x− u(k)|| | x ∈ L(k) ∩ Γ(M)}
9: D(k+1) := G(u(k+1))

10: d(k+1) := DNN(D(k+1))

11: k := k + 1

12: end while

13: output u(k)

14: stop

Denote by G(u) the function that constructs a receptive field centered at the point u and calculates
the local image of the LP problem at this point. The algorithm for constructing a multidimensional
image of the LP problem is described and investigated in [38]. Denote by DNN a deep neural network,
which consumes a local image of the LP problem and outputs the vector d that defines the direction
of movement along the surface of the feasible polytope. Thus, Algorithm 1 can be transformed into
Algorithm 2. The set of labeled examples required for DNN training can be obtained using the AlFaMove
algorithm described above. We plan to conduct a separate study specifically addressing this subject.

Let us estimate the time complexity of Algorithm 2. The surface movement method visits4 each
hyperplane of the recessive polytope no more than once. A visit to a hyperplane is performed within
one iteration of the while loop (steps 6–12 of Algorithm 2). Therefore, the total number of iterations
can be estimated as O(m), where m is the number of constraints of LP Problem (1). Finding the next
approximation u(k+1) in Step 8 of Algorithm 2 can be implemented by dichotomy. Thus, the number of
operations in Step 8 does not depend on the number of constraints m, nor on the dimension n, and, for
large values of m and n, it can be estimated as a constant. The most time-consuming operation is the
construction of a local image of LP Problem (1) in Step 9 of Algorithm 2. A receptive field in the form
of a hypercubic lattice consists of η(n−1) points, where n is the dimension of space, and η is the number
of points in one dimension. However, recent study [42] has shown that a cruciform receptive field with
the number of points (η − 1)n+ 1 gives results that are not inferior to the hypercubic one in terms of
the accuracy of solving the LP problem. A pre-trained feedforward neural network DNN calculates the
movement direction vector d at step 10 in a time that depends only on n, since it is fed (η − 1)n+ 1
numbers (in the case of a cruciform receptive field). Thus, the total time complexity of the algorithm can
be estimated as O(mn).

In addition, we note that the scalability boundary5 of the algorithm for constructing a visual image of
the LP problem can be estimated as O(

√
2n2m+m2n+ 8nm− 6m) [38]. Under the assumption that

4A visit to a hyperplane is understood as a rectilinear movement from the point of entry to the hyperplane to the point of the
first change in the direction of movement.

5The scalability boundary refers to the number of processor nodes of a cluster computing system on which the maximum
speedup is achieved.
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m = O(n), we obtain, for the scalability boundary, the estimation O(n
√
n), which is close to a linear

relationship. This means that the algorithm for constructing a local image of the LP problem can be
effectively parallelized on a large number of processor nodes of a cluster computing system. So for n = 7
and m = 15, computational experiments show a peak of speedup on 326 processor nodes [38]. Note that
the number of iterations of Algorithm 2 does not depend on εf , since there is no such parameter in this
algorithm.

The surface movement method is self-correcting. Therefore, it can potentially be used to solve non-
stationary problems. At that, if only the objective function changes, then Algorithm 2 does not require
any crucial changes at all. It is important that the rate of correction outperforms the rate of change. If the
system of constraints changes (without changing the dimension), then Algorithm 2 will require certain
modifications, since the current approximation may “dive” into the polytope or “break away” from its
surface. The authors intend to study this issue in detail in the future.

Algorithm 2 can also be used to solve LP problems in real time. Indeed, the number of iterations is
bounded by the parameter m. With a fixed n, building a local image of the LP problem requires a fixed
number of operations. At the same time, the image construction procedure is effectively parallelized on
a large number of processor nodes. The feedforward neural network DNN processes the local image of
the LP problem in a fixed time, depending only on n. The work of a neural network can also be efficiently
parallelized using GPUs. In the future, it is possible to refuse the traveling along the faces/edges of the
feasible polytope and analyze with the use of a neural network the image of the entire feasible polytope
obtained from the apex point (see [40]). The neural network will produce an approximate solution, which
can be refined by analyzing a fixed number of local images with increasing detail. However, this issue
needs further research.

The Algorithm 1 constructs the optimal objective path to a solution of the LP problem on the surface
of the feasible polytope. This directly follows from the construction of the algorithm and Proposition 3.
An interesting question is whether this path is always the path of the shortest length in the sense of the
Euclidean metric. The following simple example in the space R

3 shows that this is not always the case.
For the system of constraints

x+ 2y � 2, 2x+ y � 2, x � 0, y � 0, z = 0;

and the objective function f(x, y, z) = y, the optimal objective path may not coincide with the shortest
path (see Fig. 4a).

The question may also arise, whether it is possible to replace Γ(M) with Γ(M̂) in Step 13 of
Algorithm 1, since this reduces the number of inequalities used for checking the condition x ∈ Γ(M).
The answer is negative. For example (see Fig. 4b), in the space R2, for the system of constraints

x+ 2y � 2, 2x+ y � 2, x+ y � 1, x � 0, y � 0;

and the objective function f(x, y) = y, with u(1) = (2/3, 2/3), we obtain

max{||x− u(1)|| | x ∈ L(1) ∩ Γ(M̂)} = +∞.
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As a drawback of the surface movement method, it can be noted that it is not affine invariant, since the
cost functional is identified with the vector. Thus, the behavior of the method depends on the Euclidean
structure defined by the coordinate system.

The scientific contribution and theoretical significance of the proposed method is that, for the first
time, it opens up the possibility of using feedforward neural networks to solve multidimensional LP
problems based on the analysis of their images.

5. CONCLUSIONS

The article presented a new method for solving the linear programming problem (LP), called the
“surface movement method”. This method constructs, on the surface of the polytope bounding the
feasible region, a path from an initial point to a point of solving the LP problem. The movement vector
is always constructed in the direction of the maximum increase/decrease in the value of the objective
function. The resulting path is called the optimal objective path.

The surface movement method assumes the use of a feedforward neural network to determine
the direction of movement along the faces of the feasible polytope. To do this, a local image of the
multidimensional LP problem is constructed at the point of the current approximation, which is fed to
the input of the neural network. The set of labeled precedents needed for training a neural network can
be obtained using the apex method.

To build a theoretical basis of the surface movement method, the concept of the objective projection
is introduced. The objective projection is an oblique projection in the direction parallel to the gradient
vector of the objective function. A scalar quantity called bias is defined. The bias modulus is equal to
the distance from the point to its objective projection. The bias sign is determined by the position of the
point inside or outside of the feasible polytope. An equation for calculating the bias of a point relative to
the boundary of the feasible polytope is obtained. It is shown that a larger bias corresponds to a larger
value of the objective function. A formalized description of the surface movement method in the form
of an algorithm is presented. The main convergence theorem of the surface movement method to the
solution of the LP problem in a finite number of iterations is proved. A version of the surface movement
algorithm using a function of constructing a local multidimensional image of the LP problem and a deep
neural network is provided.

As directions for further research, the following can be indicated.

1. Design and training of a DNN network capable of calculating the movement vector in the
direction of maximizing the value of the objective function for multidimensional LP problems.

2. Development of a software package for a cluster computing system implementing Algorithm 2 by
combining supercomputer and neural network technologies.

3. Study of the dependence of the DNN network accuracy on the density of the receptive field.

4. Study of the suitability of the surface movement method for solving non-stationary LP problems.

5. Study of the suitability of the surface movement method for solving LP problems in real time.

6. Development of a new visual method for solving LP problems using neural networks based on the
analysis of the image of the feasible polytope as a whole.
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Appendix

NOTATIONS

R
n real Euclidean space

||·|| Euclidean norm

〈·, ·〉 dot product of two vectors

f(x) linear objective function

c gradient of objective function f(x)

ec unit vector parallel to vector c

x̄ solution of LP problem

ai ith row of matrix A

Hi hyperplane defined by equation 〈ai,x〉 = bi

Ĥi half-space defined by inequality 〈ai,x〉 � bi

P set of row indexes of matrix A

I index set of recessive half-spaces

M feasible polytope

M̂ recessive polytope

Γ(M) boundary of M

Γ(M̂) boundary of M̂

γi(z) objective projection of z onto Hi

βi(z) bias of z relative to Hi

γ̂(z) objective projection of z onto Γ(M̂)

β̂(z) bias of z relative to Γ(M̂)

Vr(x) n-dimensional ball of radius r centered at point x
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