Всероссийская научная конференция с международным участием «Цифровая индустрия: состояние и перспективы развития 2023» (Челябинск, 21-23 ноября 2023 г.)

Построение проекции вектора на гиперплоскость в многомерном пространстве путем взаимодействия суперкомпьютера и искусственной нейронной сети

Н.А. Ольховский

Южно-Уральский государственный университет (национальный исследовательский университет)

Исследование выполнено при финансовой поддержке РНФ в рамках научного проекта № 23-21-00356

Архитектура программного комплекса

- $\langle c, x \rangle$ скалярное произведение
- с вектор размерности п
- *b* вектор размерности *m*
- *А* матрица *m* × *n*
- $x \in \mathbb{R}^n$

$\bar{x} = \arg \max\{\langle c, x \rangle | Ax \le b\}$

Задача линейного

Идея предлагаемого подхода

Рецессивное полупространство

Переход к рецессивному многограннику

Рецессивный многогранник

 H_2

 H_3

 \widehat{M}

 $\widehat{\Gamma}_M$

 H_5

- Многогранник, образуемый пересечением с-рецессивных полупространств
- Представляет собой замкнутое неограниченное множество

$$\widehat{M} = \bigcap_{i \in \mathcal{I}} \widehat{H}_i$$

 $\widehat{M} = \{ x \in \mathbb{R}^n | \langle a_i, x \rangle \le b_i, i \in \mathcal{I} \}$ $\widehat{\Gamma}_M = \{ x \in \mathbb{R}^n | \forall \varepsilon > 0 : S_{\varepsilon}(x) \cap \widehat{M} \neq \emptyset \land S_{\varepsilon}(x) \cap \widehat{M}^C \neq \emptyset \}_{\alpha}$

Смещение

Целевая проекция: $\gamma_i(g) = g - \beta_i(g) \frac{c}{\|c\|}$ Ортогональная проекция: $\pi_c(\gamma_i(g)) = g$

$$\beta_i(g) = \frac{\langle a_i, g \rangle - b_i}{\langle a_i, c \rangle} \|c\|$$

$$r_{i}(g)$$

 $r_{i}(g)$
 H_{i}

Целевая проекция на границу рецессивного многогранника

Построение рецептивного поля

Рецептивная гиперплоскость: $H_c = \{x \in \mathbb{R}^n \mid \langle c, x - z \rangle = 0\}$

Целевая проекция: $\hat{\gamma} : H_c \to \hat{\Gamma}_M$

Рецептивное поле (flat)

 η — ранг δ — шаг

Receptive configurations

flat

 η – rank δ – density

Вектор движения

Создание обучающего прецедента

Рецептивное поле (cross)

Архитектура нейронной сети

Архитектура нейронной сети

Для cross: $p = 2\eta(n-1) + 1$ Для flat: $p = (2\eta + 1)^{n-1}$

Эксперименты

Параметры

Число случайных задач ЛП 50 000 (для ℝ³); 20 000 (для ℝ⁴); Число случайных ограничений 7 (для ℝ³); 8 (для ℝ⁴);

Конфигурации рецептивного поля

Ранг (η)	Плотность (δ)	Количество точек рецептивного поля			
		K_{flat}^2	K_{cross}^2	K_{flat}^3	K ³ _{cross}
5	1.00	121	21	1331	31
4	1.25	81	17	729	25
3	1.66667	49	13	343	19
2	2.5	25	9	125	13
1	5	9	5	27	7

Метрики

MAE =
$$\frac{1}{n} \sum |y_{true} - y_{pred}|$$

Cosine Similarity (CS)

$$CS = \frac{\sum(y_{true} \cdot y_{pred})}{\sqrt{\sum y_{true}^2} \cdot \sqrt{\sum y_{pred}^2}} \cdot 100$$

у_{true} – истинное значение у_{pred} – ответ ИНС n – размер выборки (batch size)

Достигнутая точность

Для \mathbb{R}^3 : flat CS = 97,4% MAE = 0,0311 cross CS = 96,2%

$$MAE = 0,0369$$

Для \mathbb{R}^4 : flat CS = 95,2%MAE = 0,0437 cross CS = 95,9%MAE = 0,0499

Зависимость точности от η

Спасибо за внимание!