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Abstract. The paper is dedicated to a problem of effective query pro-
cessing in cluster database systems. An original approach to data allo-
cation and replication at nodes of a cluster system is presented. On the
basis of this approach the load balancing method is developed. Also, we
propose a new method for parallel query processing on the cluster sys-
tems. All described methods have been implemented in ”Omega” paral-
lel database management system prototype. Our experiments show that
”Omega” system demonstrates nearly linear scalability even in presence
of data skew.

1 Introduction

Nowadays, parallel database system applications became more and more widely
distributed. Current parallel DBMS solutions are intended to process OLAP
queries in petabyte data arrays. For example, DBMS Greenplum based on the
MapReduce technology processes six and a half Petabyte of storage for deep
analysis on a 96-nodes cluster system in the eBay [1]. DBMS Hadoop handles
two and half Petabyte of storage on a cluster system consisting of 610 nodes
for popular web-tool facebook. There are several commercial parallel DBMS in
the area of parallel OLTP query processing among which the most known are
Teradata, Oracle Exadata and DB2 Parallel Edition.

Modern researches in this area follow in a direction of self-tuning DBMS [2],
data partitioning and load balancing [3], parallel query optimization [4] and an
effective using of modern multicore processors [5].

One of the major objectives in parallel DBMS is load balancing. In the pa-
per [6], it has been shown that a skews appearing in a parallel database manage-
ment systems with a shared-nothing architecture at processing of a query, can
lead to almost complete degradation of a system performance.

In the paper [7], an approach to solve the load balancing problem for parallel
database management systems with shared-nothing architecture is proposed.
This approach is based on data replication. The given solution allows reducing
the network data transfer overhead during load balancing. However this approach
is applicable in rather narrow context of spatial databases in a specific segment
? This work was supported by the Russian foundation for basic research (project 09-

07-00241-a) and Grant of the President of the Russian Federation for young scientists
supporting (project MK-3535.2009.9)



2

of a range queries. In paper [3], the load balancing problem is solved by partial
repartitioning of the database before running a query execution. This approach
reduces total amount of data transferred between computing nodes during a
query processing, however it demands a very high interprocessor communication
bandwidth.

In this paper, we present a new parallel query processing method based on
the approach to database partitioning named ”partial mirroring”. This method
solves problem of effective query processing and load balancing in cluster system.

The article is organized as follows. In section 2, the method of parallel query
processing in DBMS for cluster system is described. In section 3, a data parti-
tioning strategy for cluster system and algorithm of load balancing are proposed.
In section 4, the results of computing experiments are shown and discussed. In
conclusion, we summarize the obtained results and discuss the future work di-
rections.

2 Organization of Parallel Query Processing

In relational database management systems with shared-nothing architecture,
parallel query processing is based on data fragmentation. In this case, each rela-
tion is divided into a number of disjoint horizontal fragments, which are parti-
tioned into different disk units of multiprocessor system. Fragmentation strategy
is defined by a fragmentation function φ. For each tuple of the relation, this func-
tion calculates the cluster node number where this tuple has to be placed. The
query is executed on all cluster nodes by parallel agents [8]. Each agent processes
it’s own fragments of the relations and generates partial query result. These par-
tial results are merged in the resulting relation. In general case, it is necessary
to perform passing tuples between the cluster nodes in order to obtain the cor-
rect result. For managing these communications, we insert the special exchange
operator [9] in appropriate points of query execution plan tree.

The exchange operator is defined by a distribution function ψ. For each input
tuple, this function calculates the number of the cluster node where this tuple
has to be processed.

The exchange operator passes tuples between parallel agents by using the
communication channels. Each channel is defined by the pair (node number,
port number). As the node number we use the parallel agent number and as the
port number we use the sequence number of the exchange operator in the query
tree.

Let’s describe the parallel query processing scheme in a parallel DBMS for
cluster systems. We assume that the computing system is a cluster consisting
from N of nodes as shown in Figure 1. We suppose the database to be partitioned
into all nodes of the cluster system. According to the given scheme, SQL-query
processing consists of three stages.

At the first stage, the SQL query is translated into a sequential physical plan.
At the second stage, the sequential physical plan is transformed to the parallel
plan being a set of parallel agents. It is obtained by inserting the exchange
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Fig. 1. The scheme of query processing in parallel DBMS for cluster systems. Q –
physical query plan, Ai – parallel agent, CNi – computing node.

operator in appropriate points of the plan tree. All parallel agents have the
same structure.

At the third stage, parallel agents are spread among cluster nodes where each
of them is interpreted by the query executor. Resulting relations produced by the
agents are merged through the root exchange operators on the some dedicated
node.

3 Data Placement and Load Balancing

3.1 Data Fragmentation and Segmentation

In the cluster system, we use the following database partitioning [10]. Each re-
lation is divided into disjoint horizontal fragments, which are distributed among
cluster nodes. We suppose that tuples in the fragment are ordered in a certain
way. This order defines the sequence, in which the tuples are being read by the
scan operator. We called this order as natural order. In practice, the natural
order can be defined by a physical sequence of tuples or by an index.

At the logical level, each fragment is divided into sequence of segments with
an equal length. The length of the segment is measured in tuples. This is a
system parameter. Dividing tuples into segments is performed by the natural
order beginning from the first tuple. The last segment of a fragment can be
incomplete.

Let’s denote the quantity of segments in fragment F as S(F ).

S(F ) =
⌈
T (F )
L

⌉
.

Here T (F ) – number of tuples in fragment F , L – segment length.
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3.2 Data Replication

Let fragment F0 be allocated on disk d0 ∈ D in the cluster system. We suppose
each disk di ∈ D(i > 0) contains a partial replica Fi, which contains some (may
be empty) subset of tuples of fragment F0.

Segment is the smallest replication unit. The size of replica Fi is determined
by the replication factor

ρi ∈ R, 0 ≤ ρi ≤ 1,

which is a property of replica Fi. It is computed by the formula:

T (Fi) = T (F0)− d(1− ρi) · S(F0)e · L.

The natural order of tuples in replica Fi is determined by the natural order of
tuples in fragment F0. The following formula determines the first tuple numberN
of replica Fi:

N(Fi) = T (F0)− T (Fi) + 1.

If replica Fi is empty, then N(Fi) = T (F0)+1. It corresponds to ”end-of-file”
position.

3.3 Load Balancing Method

Parallel Agent Work Scheme Let SQL query use n relations. Let Q be the
parallel plan of the SQL query. Each agent Q ∈ Q has n input streams s1, . . . ,
sn. Each stream si(i = 1, . . . , n) is determined by the four parameters:

1. fi – pointer to the fragment;
2. qi – quantity of segments in part to be processed;
3. bi – number of the first segment in the part;
4. ai – load balancing indicator: 1 – load balancing is admitted, 0 – load bal-

ancing is not admitted.

An example of the parallel agent with two input streams is presented in
Figure 2.

Parallel agent Q can exist in one of the two states: active and passive. In
active state, agent Q sequentially scans tuples from the all input streams. Pa-
rameters qi and bi dynamically changed for all i = 1, . . . , n during scan process.
In passive state, agent Q does not perform any actions. At the initial stage of
query processing, the agent executes an initialization procedure, which defines
all the parameters of the input streams and sets the agent state equal to active.

The agent begins to process fragments associated with its input streams.
The agent processes only that part of the fragment, which belongs to the section
defined by the parameters of the stream. When all assigned segments in all input
streams have been processed, the agent turns into passive state.
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Load Balancing Algorithm During query parallel plan processing, some
agents became finished while other agents of the plan continue processing seg-
ment intervals assigned to them. So we have load skew. To prevent the load
skew, we proposes the following load balancing algorithm based on partial repli-
cation [10].

Let parallel agent Q̄ ∈ Q have finished processing the segment intervals in all
input streams and be turned into passive state. In the same time, let agent Q̃ ∈ Q
still continue processing its segment intervals. So we have to do load balancing.
We name the idle agent Q̄ as forward and the overloaded agent Q̃ – as an
backward. To prevent load skew we have transfer a part of unprocessed segments
transferred from agent Q̃ to agent Q̄. The scheme of load balancing algorithm
is shown in Figure 3. In the algorithm, we use the balancing function Delta. For
each stream, the balancing function calculates the quantity of segments, which
have been transferred from the backward agent Q̃ to the forward agent Q̄.

For effective using the described algorithm, we have to manage the following
problems.

1. For each forward agent, we have to choose a backward agent, which will be
the subject of balancing. A way of choosing backward agent we will name as
backward choice strategy.

2. We have to solve, what quantity of unprocessed segments will be transferred
from the backward to the forward. We will name the function calculating
this quantity as balancing function.

Backward Choice Strategy Let cluster system T execute parallel query
plan Q. Let Ψ be the number of nodes of cluster T . Let forward agent Q̄ ∈ Q
located on the node ψ̄ ∈ Ψ have finished its work. We have to choose a backward
agent Q̃ ∈ Q(Q̃ 6= Q̄) from the set of agents in parallel plan Q. Denote by ρ̃ the
replication factor which defines a size of the replica f̃i for fragment f̄i.

Fig. 2. Parallel agent with two input streams.
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/* load balancing procedure between agents Q̄ (forward)
and Q̃ (backward). */
ū = Node(Q̄); // pointer to the agent node Q̄
pause Q̃; // turn agent Q̃ into passive state
for (i=1; i≤n; i++) {

if(Q̃.s[i].a == 1) {
f̃i = Q̃.s[i].f ; // fragment assigned to agent Q̃
r̄i = Re(f̃i, ū); // replica f̃i into the node ū
δi = Delta(Q̃.s[i]); // quantity of segments to trans-

fer
Q̃.s[i].q− = δi;
Q̄.s[i].f = r̄i;
Q̄.s[i].b = Q̃.s[i].b + Q̃.s[i].q;
Q̄.s[i].q = δi;

} else
print(”Load balancing is not permitted.”);

};
activate Q̃ // turn agent Q̃ into active state
activate Q̄ // turn agent Q̄ into active state

Fig. 3. Load balancing algorithm for two parallel agents.

To choose a backward agent, we will use ratings. In the parallel plan, we
assign to each agent a rating, which is a real number. The agent with maximum
positive rating has to be selected as the backward. If all the agents have negative
ratings, the forward agent Q̄ has to be over. If several agents have the maximum
positive rating at the same time, we choose from them the agent, which was idle
for the longest time.

The optimistic strategy uses the following rating function γ : Q → R:

γ(Q̃) = ãi · sgn( max
1≤i≤n

q̃i −B) · ρ̃ · ϑ · λ.

Here λ – some positive weight coefficient; B – the nonnegative integer defining
the minimal quantity of segments to be transferred during load balancing; ρ̃ –
the replication factor; ϑ – the statistical coefficient accepting one of following
values:

– (−1) – the quantity of unprocessed segments for the backward is less than B;
– 0 – the backward did not participate in load balancing;
– a positive integer – the quantity of completed load balancing procedures, in

which the backward has took a part.

Balancing Function For each stream s̃i of backward agent Q̃ the balancing
function ∆ defines the quantity of segments, which has to be transferred to the
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forward agent Q̄. In the simplistic case we can define:

∆(s̃i) =

⌈
min (q̃i, S(f̃i) · ρ̃)

N

⌉
,

where N is the quantity of the parallel agents participating in query processing.
Function S(f̃i), introduced into the section 3.1, calculates the quantity of seg-

ments in fragment f̃i. So, function ∆ splits unprocessed segments of fragment f̃i

into N buckets and transfers one of them from Q̃ to Q̄. Such balancing function
provides the uniform distribution of the load among the forward agents, which
are idle.

4 Experiments

To verify the described load balancing method we performed three series of
computing experiments using the ”Omega” parallel database management pro-
totype [11]. These experiments had the following aims:

– to obtain an estimations of optimum values for the parameters of the load
balancing algorithm;

– to investigate the influence of the load balancing algorithm on the DBMS
scalability;

– to perform the efficiency analysis of the load balancing algorithm for different
kinds of the skew.

For investigation of the load balancing algorithm we used the in-memory hash-
join algorithm. This algorithm is used when one of the input relations can be
allocated in main memory.

4.1 Parameters of Computing Experiments

Both relations R and S have five attributes having common domain: nonnegative
integers in a range from 0 to 10 million. In our experiments we processed θ−join
for relations R and S by the in-memory hash join method.

R was the build relation, and S was the probe relation. We selected the size
of build relation R so that any fragment of R fit in main memory of the cluster
node. Building hash table did not demand load balancing due to the small size
of the build relation R. So we used load balancing only at the second stage of
MHJ execution.

Relations R and S were created by the automated generating procedure.
We used a probability model to fragment the relations on the cluster nodes.
According to this model, the skew factor θ, (0 ≤ θ ≤ 1) defines the set of weight
coefficients pi, (i = 1, . . . , N)

pi =
1

iθ ·H(θ)
N

,

N∑

i=1

pi = 1,
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where N - the number of fragments, Hs
N = 1−s + 2−s + . . . + N−s – N -th

harmonic number with the degree s. Each weight coefficient pi defines the size
of i−th fragment in tuples.

We used one more skew factor µ to fill join attribute values in different
fragments. Skew factor µ determines the percentage of ”own” and ”alien” tuples
in the fragment. The ”own” tuple should be processed in the same cluster node
where it’s being stored. The ”alien” tuples should be transferred to another
cluster node for its processing.

4.2 Investigation of Load Balancing Parameters

In the first series of experiments we investigated the following parameters: bal-
ancing interval, segment size and replication factor. The result of investigation
of balancing interval is shown in Figure 4. We can see that the optimal value
is 0.1 seconds. Increasing the balancing interval from 0.1 seconds to 6 seconds
considerably worsens efficiency of load balancing procedure.

The result of segment size investigation is shown in Figure 5. We can see that
the optimal value is 20 000 tuples. This value is approximately equal to 1% of
the fragment size.

Fig. 4. Impact of balancing interval (n = 64, µ = 50%).

The impact of replication factor on query processing time is shown in Fig-
ure 6. We made tests for four different values of the skew factor θ. In all cases,
skew factor µ was equal to 50%. We can see that the optimal value of replication
factor is 0.8. In this case, the load balancing almost completely eliminates the
negative impact of the skew in sizes of fragments. The full replication (ρ = 1.0)
demonstrates a worse result due to increasing the overhead of load balancing.
Also, we can see that the effectiveness of load balancing grows significantly for
big values of skew factor θ. If skew factor θ is equal to 0.2 (rule ”25-15”), then
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Fig. 5. Impact of segment size (n = 64, µ = 50%).

Fig. 6. Impact of replication factor (n = 64, µ = 50%).

load balancing allows us to reduce the query execution time by 30%. If θ = 0.68
(rule ”80-20”), then the load balancing reduces query execution time by 60%.
The experiments show that the load balancing method, described in the pa-
per, can be successfully used to eliminate a load disbalance in cluster database
systems.

4.3 Scalability of Load Balancing Algorithm

In the last series of experiments, we investigate the scalability of the load bal-
ancing algorithm presented in the paper. The results of these experiments are
shown on figures 7, 8 and 9.

In Figure 7, we presented the impact of replication factor on speedup. In this
experiment, we used the following skew values: µ = 50%, θ = 0.5. The result
of the experiment demonstrates the significant growth of speedup when load
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Fig. 7. Speedup versus replication factor (θ = 0.5, µ = 50%).

Fig. 8. Speedup versus skew factor θ (ρ = 0.50, µ = 50%).

balancing is being performed. Increasing the replication factor value leads to
”lifting” of speedup curve. In case replication factor ρ is equal to 0.8, we have
speedup near to linear.

In Figure 8, we presented the speedup curves for various values of skews
factor θ. In this experiment we used replication factor ρ = 0.5. We can see that
load balancing provides a significant speedup even at presence of severe data
skew (θ = 0.68 corresponds to rule ”80-20”).

In Figure 9, we presented the speedup curves for various values of skews
factor µ. We can see that, even in the worst case µ = 80% (80% of tuples are
”alien”), load balancing provides a visible speedup.
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Fig. 9. Speedup versus skew factor µ (θ = 0.5, ρ = 0.50).

5 Conclusions

The problem of parallel query execution in cluster systems is considered. A
load balancing method and a data placement strategy are presented. Proposed
approach is based on logical splitting the relation fragment by segments of equal
size. The proposed load balancing algorithm is based on the method of partial
replication. A strategy for choosing the backward agent is described. It uses a
rating function. Proposed methods and algorithms are implemented in ”Omega”
DBMS prototype. The experiments at cluster system are performed. The results
confirm the efficiency of proposed approach.

There are at least two directions of future work suggested by this research.
First, it is useful to incorporate the proposed technique of parallel query exe-
cution into open source PostgreSQL DBMS. Second, it is interesting to extend
this approach on GRID DBMS for clusters with multicor processors.
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