
Scalability Evaluation of NSLP Algorithm for
Solving Non-Stationary Linear Programming
Problems on Cluster Computing Systems

Irina Sokolinskaya and Leonid B. Sokolinsky�?

South Ural State University
76 Lenin prospekt, Chelyabinsk, Russia, 454080

Irina.Sokolinskaya@susu.ru, Leonid.Sokolinsky@susu.ru

Abstract. The paper is devoted to a scalability study of the NSLP al-
gorithm for solving non-stationary high-dimension linear programming
problem on the cluster computing systems. The analysis is based on the
BSF model of parallel computations. The BSF model is a new parallel
computation model designed on the basis of BSP and SPMD models.
The brief descriptions of the NSLP algorithm and the BSF model are
given. The NSLP algorithm implementation in the form of a BSF pro-
gram is considered. On the basis of the BSF cost metric, the upper bound
of the NSLP algorithm scalability is derived and its parallel efficiency is
estimated. NSLP algorithm implementation using BSF skeleton is de-
scribed. A comparison of scalability estimations obtained analytically
and experimentally is provided.

Keywords: non-stationary linear programming problem · large-scale
linear programming · NSLP algorithm · BSF parallel computation model
· cost metric · scalability bound · parallel efficiency estimation.

1 Introduction

The Big Data phenomenon has spawned the large-scale linear programming
(LP) problems [1]. Such problems arise in the following areas: scheduling, lo-
gistics, advertising, retail, e-commerce [2], quantum physics [3], asset-liability
management [4], algorithmic trading [5,6,7,8] and others. The similar LP prob-
lems include up to tens of millions of constraints and up to hundreds of millions
of decision variables. In many cases, especially in mathematical economy, these
LP problems are nonstationary (dynamic). It means that input data (matrix A,
vectors b and c) is evolving with time, and the period of data change is within
the range of hundredths of a second.

? The reported study has been partially supported by the RFBR according to research
project No. 17-07-00352-a, by the Government of the Russian Federation according
to Act 211 (contract No. 02.A03.21.0011.) and by the Ministry of Education and
Science of the Russian Federation (government order 2.7905.2017/8.9).

2 I. Sokolinskaya, L.B. Sokolinsky

Until now, one of the most popular methods solving LP problems is the class
of algorithms proposed and designed by Dantzig on the base of the simplex
method [9]. The simplex method has proved to be effective in solving a large
class of LP problems. However, in certain cases the simplex method has to move
across all the vertices of the polytope, which corresponds to an exponential time
complexity [10]. Karmarkar in [11] proposed a method for linear programming
called “Interior point method” which runs in polynomial time and is also very
efficient in practice.

The simplex method and the method of interior points remain today the main
methods for solving the LP problem. However, these methods may prove ineffec-
tive in the case of large scale LP problems with rapidly evolving input data. To
overcome the problem of non-stationarity of input data, the authors proposed
in [12] the scalable algorithm NSLP (Non-Stationary Linear Programming) for
solving large-scale non-stationary LP problems on cluster computing systems. It
includes two phases: Quest and Targeting. The Quest phase calculates a solution
of the system of inequalities defining the constraint system of the linear program-
ming problem under condition of the dynamic changes of input data. The point
of pseudo-projection on n-polytope M is taken as a solution. Polytope M is the
set of feasible solutions of the LP problem. The pseudo-projection is an extension
of the projection, which uses Fejer (relaxation) iterative process [13,14,15,16]. A
distinctive feature of the Fejer process is its ”self-guided” capability: the Fejer
process automatically corrects its motion path according to the polytope posi-
tion changes during the calculation of the pseudo-projection. The Quest phase
was investigated in [12], where the convergence theorem was proved for the case
when the polytope is translated with a fixed vector in the each unit of time. In the
paper [17], the authors demonstrated that Intel Xeon Phi multi-core processors
can be efficiently used for calculating the pseudo-projections.

The Targeting phase forms a special system of points having the shape of
the n-dimensional axisymmetric cross. The cross moves in the n-dimensional
space in such a way that the solution of the LP problem permanently was in
the ε-vicinity of the central point of the cross. The Targeting phase can be
effectively implemented as a parallel program for a clustered computing system
by using the ”master-workers” framework [18,19,20]. In this paper, we discuss
a parallel implementation of the NSLP algorithm using the BSF computational
model presented in [21]. On the base of the described BSF-implementation, a
quantitative scalability analysis of the NSLP algorithm is performed.

The rest of the paper is organized as follows. Section 2 gives a formal state-
ment of a LP problem and presents the brief description of the NSLP algorithm.
Section 3 provides an outline of the BSF computational model and presents cor-
responding cost metrics. Section 4 describes a BSF-implementation of the NSLP
algorithm, calculates the upper bound of scalability and evaluates the parallel
efficiency depending on the percentage of initial data being changed dynami-
cally. Section 5 describes an implementation of the NSLP algorithm based on
the BSF skeleton in C language and compares the results obtained analytically

Scalability Evaluation of NSLP Algorithm 3

and experimentally. Section 6 summarizes the results obtained and proposes the
directions for future research.

2 NSLP algorithm

Let we be given a non-stationary LP problem in the vector space Rn:

max {〈ct, x〉 |Atx ≤ bt, x ≥ 0} , (1)

where the matrix At has m rows. The non-stationarity of the problem means
that the values of the elements of the matrix At and the vectors bt, ct depend on
the time t ∈ R≥0. We assume that the value of t = 0 corresponds to the initial
instant of time:

A0 = A, b0 = b, c0 = c (2)

Let Mt be a polytope defined by the constraints of the non-stationary LP
problem (1). Such a polytope is always convex. The Quest phase calculates a
point z belonging to the polytope Mt. This phase is described in detail in [12].
The Quest Phase is followed by the Targeting phase. At the Targeting phase,
a n-dimensional axisymmetric cross is formed. The n-dimensional axisymmetric
cross is a finite set G = {g0, . . . , gP−1} ⊂ Rn having the cardinality equals P+1,
where P is a multiple of n ≥ 2. Among points of the cross, the point g0 called
the central point is single out. The initial coordinates of the central point are
assigned the coordinates of the point z calculated in the Quest phase. The set
G\{g0} is divided into n disjoint subsets Ci (i = 0, . . . , n−1) called the cohorts:

G\{g0} =

n−1⋃
i=0

Ci.

Each i-th cohort (i = 0, . . . , n− 1) consists of

K = P/n (3)

points lying on the straight line, which is parallel to the i-th coordinate axis
and passing through the central point g0. By itself, the central point does not
belong to any cohort. The distance between any two neighbor points of the set
G ∪ {g0} is equal to the constant s. It can be changed during computing. An
example of the two-dimensional cross is shown in Fig. 1. The number of points
in one dimension excluding the central point is equal to K. The symmetry of the
cross supposes that K takes only even values greater than or equal to 2. Using
equation (3), we obtain the following equation giving the total number of points
in the cross:

P + 1 = nK + 1 (4)

Since K can take only even values greater than or equal to 2 and n ≥ 2, from
equation (4), it follows that P can also take only even values and P ≥ 4. In
Fig. 1, we have n = 2, K = 6, P = 12.

4 I. Sokolinskaya, L.B. Sokolinsky

Fig. 1. Two-dimensional cross G: K = 6, P = 12

Each point of the cross G is uniquely identified by a marker being a pair of
integers numbers (χ, η) such that 0 ≤ χ < n, |η| ≤ K/2. Informally, χ specifies
the number of the cohort, and η specifies the sequence number of the point in the
cohort Cχ, being counted out of the central point. The corresponding marking
of points for the two-dimensional case is given in Fig. 1. The coordinates of the
point x(χ,η) having the marker (χ, η) can be reconstructed as follows:

x(χ,η) = g0 + (0, . . . , 0, η · s︸︷︷︸
χ

, 0, . . . , 0) (5)

The vector being added to g0 in the right part of the equation (5) has a single
non-zero coordinate in the position χ. This coordinate equals η · s, where s is
the distance between neighbor points in a cohort.

The Targeting phase includes the following steps.

1. Build the n-dimensional axisymmetric cross G that has K points in each
cohort, the distance between neighbor points equaling s, and the center at
point g0 = zk, where zk is obtained in the Quest phase.

2. Calculate G′ = G ∩Mk.
3. Calculate C ′χ = Cχ ∩G′ for χ = 0, . . . , n− 1.

4. Calculate Q =
n−1⋃
χ=0
{arg max {〈ck, g〉 | g ∈ C ′χ, C ′χ 6= ∅}}.

5. If g0 ∈Mk and 〈ck, g0〉 ≥ max
q∈Q
〈ck, q〉, then k := k + 1, and go to step 2.

6. g0 :=

∑
q∈Q

q

|Q| .

Scalability Evaluation of NSLP Algorithm 5

7. k := k + 1.

8. Go to step 2.

Thus, in the Targeting phase, the steps 2–7 form a perpetual loop in which
the approximate solution of the non-stationary LP problem is permanently re-
calculated. From the non-formal point of view, in the step 2, we determine which
points of the cross G are belonged to the polytope Mk. In the step 3, points that
do not belong to the polytope are dropped out of each cohort. In the step 4, the
point with the maximum value of the objective function is chosen among the
residuary points of each cohort. In the step 5, we check if the value of the objec-
tive function at the central point of the cross is greater than all the maximums
found in the step 4. If this condition is true then the cross does not shift, the
time counter t is incremented by one unit and the next iteration is started. If this
condition is false then we go to step 6 where the new center point is calculated
as the centroid of the set of points obtained in the step 4. In the step 7, the time
counter t is incremented by one unit. In the step 8, we go to the new iteration.
In such a way, the center g0 of the cross G permanently performs the role of an
approximate solution of the non-stationary problem (1).

3 BSF computational model

We use the BSF parallel computation model proposed in [21] to evaluate the up-
per bound of the scalability of the NSLP algorithm in the Targeting phase. The
BSF (Bulk Synchronous Farm) model was proposed to multiprocessor systems
with distributed memory. A BSF-computer consists of a collection of homoge-
neous computing nodes with private memory connected by a communication
network that delivers messages among the nodes. Among all the computing
nodes, one node called the master-node is single out. The rest of the nodes are
the slave-nodes. The BSF-computer must include at least one master-node and
one slave-node. Thus, if P is the number of slave-nodes then P ≥ 1.

BSF-computer utilizes the SPMD programming model [22] according to
which all nodes executes the same program but process different data. A BSF-
program consists of sequences of macro-steps and global barrier synchronizations
performed by the master and all the slaves. Each macro-step is divided into two
sections: master section and slave section. A master section includes instructions
performed by the master only. A slave section includes instructions performed by
the slaves only. The sequential order of the master section and the slave section
within the macro-step is not important. All the slave nodes act on the same data
array, but the base address of the data assigned to the slave-node for processing
is determined by the logical number of this node. The BSF-program includes the
following sequential sections (see Fig. 2):

– initialization;

– iterative process;

– finalization.

6 I. Sokolinskaya, L.B. Sokolinsky

Fig. 2. BSF-program structure

Initialization is a macro-step, during which the master and slaves read or gen-
erate input data. The initialization is followed by a barrier synchronization. The
iterative process repeatedly performs its body until the exit condition checked
by the master becomes true. In the finalization macro-step, the master outputs
the results and ends the program.

Body of the iterative process includes the following macro-steps:

1) sending the orders (from master to slaves);
2) processing the orders (slaves);
3) receiving the results (from slaves to master);
4) evaluating the results (master).

In the first macro-step, the master sends the same orders to all the slaves.
Then, the slaves execute the received orders (the master is idle at that time).
All the slaves execute the same program code but act on the different data with
the base address depending on the slave-node number.

It means that all slaves spend the same time for calculating. During process-
ing the order, there are no data transfers between nodes. In the third step, all
slaves send the results to the master. After that, global barrier synchronization
is performed. During the fourth step, the master evaluates received results. The
slaves are idle at that time. After result evaluations, the master checks the exit
condition. If the exit condition is true then iterative process is finished, otherwise
the iterative process is continued.

Scalability Evaluation of NSLP Algorithm 7

The BSF model provides an analytical estimation of the scalability of a BSF-
program. The main parameters of the model are [21]:

P : the number of slave-nodes;
L: an upper bound on the latency, or delay, incurred in communicating a mes-

sage containing one byte from its source node to its target node;
ts: time that the master-node is engaged in sending one order to one slave-node

excluding the latency;
tv: time that a slave-node is engaged in execution an order within one iteration

(BSF-model assumes that this time is the same for all the slave-nodes and
it is a constant within the iterative process;

tr: total time that the master-node is engaged in receiving the results from all
the slave-nodes excluding the latency;

tp: total time that the master-node is engaged in evaluating the results received
from all the slave-nodes.

Lets denote tw = P · tv – summarized time which is spent by slave-nodes for
order executions. Then, the upper bound of a BSF-program scalability can be
estimated by the following inequality [21]:

P ≤
√

tw
2L+ ts

. (6)

Note that the upper bound of the BSF-program scalability does not depend
on the time, which the master is engaged in receiving and evaluating the slave
results. The speedup of BSF-program can be calculated by the following equa-
tion [21]:

a =
P (2L+ ts + tr + tp + tw)

P 2(2L+ ts) + P (tr + tp) + tw
. (7)

One more important property of a parallel program is the parallel efficiency.
The parallel efficiency of a BSF-program can be calculated by the following
approximate equation [21]:

e ≈ 1

1 + (P 2(2L+ ts) + P (tr + tp))
/
tw
. (8)

4 BSF-implementation of NSLP algorithm

In this section, we demonstrate how the algorithm presented in section 2 can
be implemented in the BSF-program form. Based on this implementation, we
calculate the time complexity of one iteration and give an analytical estimation
of the scalability upper bound of the NSLP algorithm in the Targeting phase.
For calculating, we use the synthetic scalable linear programming problem of the
dimension called Model-n [17]. This LP problem has the matrix A of the size
n× 2(n+ 1). We assume n > 104.

The NSLP algorithm can be implemented in the BSF-program form by the
following way. In the Initialization macro-step, the master and all the slaves

8 I. Sokolinskaya, L.B. Sokolinsky

read (generate) and store in the local memory all the initial data of the non-
stationary LP problem (1); the master executes the Quest phase and finds a
point z belonging to the polytope Mt. Then, the iterative process begins. In
each iteration, the following steps are performed:

1) sending the orders from master to slaves;
2) processing the orders by slaves;
3) sending the results from slaves to master;
4) evaluating the results by master.

Table 1. Structure of message “Order for slaves”

No. Attribute ID Attribute semantic Overhead

1 θ New central point coordinates of
the n-dimensional cross

tθ

2 α New values of matrix A entries tα
3 β New values of column b elements tβ
4 γ New values of objective function co-

efficients
tγ

The order includes the information given in Table 1. Suppose that the frac-
tion of the changed elements of matrix A, column b and objective function c
coefficients equals to δ(n), where ∀n (0 ≤ δ(n) ≤ 1). In that case, the time ts
that the master-node is engaged in sending one order to one slave-node (exclud-
ing the latency) can be approximated according to Table 1 as follows:

ts = tθ+tα+tβ+tγ = O(n)+O(δ(n)·n·2(n+1))+O(δ(n)·2(n+1))+O(δ(n)n) =

= O(n) +O(δ(n) · n(n+ 1)) +O(δ(n)(n+ 1)) +O(δ(n)n) <

< O(n+ 1) +O(δ(n) · (n+ 1)2) +O(δ(n)(n+ 1)) +O(δ(n)(n+ 1)) =

= O(n+ 1) +O(δ(n) · (n+ 1)2) +O(δ(n)(n+ 1)) <

< O(δ(n) · (n+ 1)2) +O(n+ 1).

Hence,
ts < O(δ(n) · (n+ 1)2) +O(n+ 1). (9)

The smallest unit of parallelization in the BSF-implementation of the NSLP
algorithm is the cohort. The number of cohorts equals to the space dimension
n. Thus, the number P of slave-nodes should be less than or equal to the space
dimension n. We shall assume n� P . A slave-node sequentially process all the
cohorts assigned to it. In the current cohort, the coordinates of every point x
are calculated using equation (5). The time complexity of this operation is O(n).
Then the point x is checked to be belonged to the polytope Mt. To do this, it

Scalability Evaluation of NSLP Algorithm 9

is sufficient for the slave to verify the truth of the condition Atx = bt. Since At
is of size n× 2(n+ 1), the time complexity of this operation is O(n2 + n). The
number of points in a cohort excluding the central one is equal to the constant K.
According to the equation (4), the total number of points in the cross excluding
the central one is equal to nK. Hence, the time complexity of the calculations
performed for all points of the cross in steps 2–3 can be estimated as O(n3 +n2).
After this, the slaves partially (for their cohorts only) execute the step 4 of
Targeting phase (see Section 2). The total time complexity of these operations
is O(n2). Thus, the total time complexity of all the calculations performed by
slaves has the following estimation:

tw = O(n3 + n2) +O(n2) +O(n) ≤ O(n3 + n2 + n). (10)

As a result, each slave sends to the master a summarized vector of points
which belong to the polytope and have the maximum value of the objective func-
tion in the corresponding cohort. Thus, the total time complexity of transferring
the results from the slaves to the master is

tr = O(PKn) ≈ O(n). (11)

Having received the results from the slaves, the master sums them up to
complete the step 4 of the algorithm. The time complexity of these calculations
will have the following estimation:

tstep 4 ≈ O(n2). (12)

Because of the non-stationarity of the LP problem, the condition in step 5 will
be rarely true. Hence, we may assume that the next step after the step 4 will be
the step 6 in most cases. Since the number of cohorts equals to n, the total time
complexity of the step 6 of the Targeting phase is

tstep 6 = O(n2). (13)

Thus, the total time complexity of processing the results obtained by the master
from the slaves is

tp ≈ tstep 4 + tstep 6 = O(n2). (14)

Substituting the values from (10) and (9) into equation (6), we obtain the fol-
lowing estimation for the upper bound of the NSLP algorithm scalability:

PNSLP ≤

√
O(n3 + n2 + n)

2L+O(δ(n) · (n+ 1)
2
) +O(n+ 1)

. (15)

Suppose all the input data of the problem are changed at each iteration. It
corresponds to δ(n) = 1. In this case, inequality (15) is converted to the following
form

PNSLP ≤

√
O(n3 + n2 + n)

2L+O((n+ 1)
2
) +O(n+ 1)

≈ O(
√
n). (16)

10 I. Sokolinskaya, L.B. Sokolinsky

It means that the upper bound of the BSF-program scalability increases propor-
tionally to the square root of the problem dimension. Hence, the NSLP algorithm
implementation in the form of a BSF-program has limited scalability in this case.

Now suppose that the fraction of the changed problem input data at each
iteration is

δ(n) =
1

2(n+ 1)
. (17)

It corresponds to a situation where the matrix has only one changed row, the
column has only one changed element, and the objective function has no more
than one changed coefficient. In this case, we obtain the following estimation

PNSLP ≤

√
O(n3 + n2 + n)

2L+O(n+ 1) +O(n+ 1)
≈ O(

√
n2) = O(n) (18)

substituting the value of δ(n) from the equation (17) into the equation (15). It
means that the upper bound of the BSF-program scalability increases propor-
tionally to the problem dimension. Hence, the NSLP algorithm implementation
in the form of a BSF-program is scalable well in this case.

We can also estimate the BSF-implementation parallel efficiency of the NSLP
algorithm using approximate equation (8):

e =
1

1 +
P 2·(2L+ts)+P ·(tr+tp)

tw

=

=
1

1 + P 2·(2L+O(δ(n)·(n+1)2)+O(n+1))+P ·(O(n)+O(n2))
O(n3+n2)

.
(19)

For δ(n) = 1, n→∞ and P →∞, we get from (19) the following estimation

e =
1

1 + P 2(2L+O((n+1)2)+O(n+1))+P (O(n)+O(n2))
O(n3+n2)

≈

≈ 1

1 + P 2(O(n2)+O(n))+P ·(O(n2)+O(n))
O(n3+n2)

=

=
1

1 + (P 2 + P)O(n2)+O(n)
O(n3+n2)

≈ 1

1 + P 2+P
O(n)

≈ 1

1 + P 2/O(n)
.

(20)

In such a way, we obtain

e ≈ 1

1 + P 2
/
O(n)

. (21)

Hence for δ(n) = 1, the high parallel efficiency is achieved when n� P 2.
For δ(n) = 1

2(n+1) we get from (19) the following estimation

e ≈ 1

1 + P 2
/
O(n2) + P/O(n)

. (22)

Hence for δ(n) = 1
2(n+1) , the high parallel efficiency is achieved when n� P .

Scalability Evaluation of NSLP Algorithm 11

Fig. 3. Experiments for n = 400.

Fig. 4. Experiments for n = 800.

Fig. 5. Experiments for n = 1080.

12 I. Sokolinskaya, L.B. Sokolinsky

5 Numerical Experiments

The implementation of the Qwest phase was described and evaluated by us in
the paper [17]. In the present work, we have done the implementation of the
Targeting phase in C language using the BSF skeleton. The source code of this
program is freely available on Github, at https://github.com/leonid-sokolinsky/
BSF-NSLP. We investigated the speedup and parallel efficiency of this BSF-
program on the supercomputer ”Tornado SUSU” [23] using the synthetic scal-
able linear programming problem Model n [17] mentioned in the section 4. The
calculations were performed for the dimensions 400, 800 and 1080. At the same
time, we plotted the curves of speedup and parallel efficiency for these dimensions
using equations (7) and (8). We assumed that δ(n) = 1/2(n+ 1). The results are
presented in Fig. 3–5. In all cases, the analytical estimations were very close to
experimental ones. Moreover, the performed experiments show that the upper
bound of the BSF-program scalability increases proportionally to the problem
dimension. It was analytically predicted using the equation (18) in Section 4.

6 Conclusion

In this paper, the scalability and parallel efficiency of the NSLP algorithm used to
solve large-scale non-stationary linear programming problems on cluster comput-
ing systems were investigated. To do this, we used the BSF (Bulk Synchronous
Farm) parallel computation model based on the “master-slave” paradigm. The
BSF-implementation of the NSLP algorithm is described. A scalability upper
bound of the BSF-implementation of the NSLP algorithm is obtained. This es-
timation tells us the following. If all the input data of the problem are changed
at each iteration then the upper bound of the BSF-program scalability increases
proportionally to the square root of the problem dimension. In this case, the
NSLP algorithm implementation in the form of a BSF-program has limited scal-
ability. If each inequality of the constraint system has no more than one coef-
ficient changed during an iteration then the upper bound of the BSF-program
scalability increases proportionally to the problem dimension. In this case, the
NSLP algorithm implementation in the form of a BSF-program is scalable well.
The equations for estimating the parallel efficiency of the BSF-implementation
of the NSLP algorithm are also deduced. These equations allow us to conclude
the following. If during the iteration all the problem input data are dynamically
changed then for the high parallel efficiency it is necessary that the problem
dimension is much greater than the square of the number of slaves: n � P 2.
However, if in each inequality of the constraint system no more than one coef-
ficient changes during each iteration then for a high parallel efficiency it is nec-
essary that the problem dimension be much greater than the number of slaves:
n � P . The numerical experiments with a synthetic problem showed that the
BSF model accurately predicts the upper bound of the scalability of the program
that implements the Targeting phase using the BSF skeleton.

As future research directions, we intend to do the following:

https://github.com/leonid-sokolinsky/BSF-NSLP
https://github.com/leonid-sokolinsky/BSF-NSLP

Scalability Evaluation of NSLP Algorithm 13

1) implement the Qwest phase in C language using the BSF skeleton and MPI-
library;

2) carry out numerical experiments on a cluster computing system using syn-
thetic and real LP problems;

3) compare the scalability boundaries of the Qwest phase obtained experimen-
tally and analytically.

References

1. Chung, W.: Applying large-scale linear programming in business analytics. In:
Proceedings of the 2015 IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM), pp. 1860-1864. IEEE (2015)

2. Tipi, H.: Solving super-size problems with optimization. Presentation at the
meeting of the 2010 INFORMS Conference on O.R. Practice. Orlando, Florida.
April 2010. http://nymetro.chapter.informs.org/prac cor pubs/06-10%20Horia%
20Tipi%20SolvingLargeScaleXpress.pdf (accessed 07.05.2017).

3. Gondzio, J. et al.: Solving large-scale optimization problems related to Bells The-
orem. Journal of Computational and Applied Mathematics, vol. 263, pp. 392-404.
(2014)

4. Sodhi, M.S.: LP modeling for asset-liability management: A survey of choices and
simplifications. Operations Research, vol. 53, no. 2, pp. 181-196. (2005)

5. Brogaard, J., Hendershott, T., Riordan, R.: High-Frequency Trading and Price
Discovery. Review of Financial Studies. 27, 2267–2306 (2014).

6. Budish, E., Cramton, P., Shim, J.: The High-Frequency Trading Arms Race: Fre-
quent Batch Auctions as a Market Design Response. The Quarterly Journal of
Economics. 130, 1547–1621 (2015).

7. Goldstein, M.A. and Kwan, A., Philip, R.: High-Frequency Trading Strategies.
http://ssrn.com/abstract=2973019

8. Hendershott, T., Jones, C.M., Menkveld, A.J.: Does Algorithmic Trading Improve
Liquidity? The Journal of Finance. 66, 1–33 (2011).

9. Dantzig, G.B.: Linear programming and extensions. Princeton university press,
Princeton, N.J. (1998).

10. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities III
(Proceedings of the Third Symposium on Inequalities held at the University of
California, Los Angeles, Calif., September 1–9, 1969, dedicated to the memory of
Theodore S. Motzkin). pp. 159–175. Academic Press, New York-London (1972).

11. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica. 4, 373–395 (1984).

12. Sokolinskaya, I., Sokolinsky, L.B.: On the Solution of Linear Programming Prob-
lems in the Age of Big Data. In: Sokolinsky, L., Zymbler, M. (eds.) PCT
2017. CCIS, vol. 753. pp. 86-100. Springer, Cham (2017). http://doi.org/10.1007/
978-3-319-67035-5 7

13. Agmon, S.: The relaxation method for linear inequalities. Canadian Journal of
Mathematics. 6, 382–392 (1954).

14. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Jour-
nal canadien de mathmatiques. 6, 393–404 (1954).

15. Eremin, I.I.: Fejerovskie metody dlya zadach linejnoj i vypukloj optimizatsii [Fejers
Methods for Problems of Convex and Linear Optimization]. Publishing of the South
Ural State University, Chelyabinsk (2009).

http://nymetro.chapter.informs.org/prac_cor_pubs/06-10%20Horia%20Tipi%20SolvingLargeScaleXpress.pdf
http://nymetro.chapter.informs.org/prac_cor_pubs/06-10%20Horia%20Tipi%20SolvingLargeScaleXpress.pdf
http://ssrn.com/abstract=2973019
http://doi.org/10.1007/978-3-319-67035-5_7
http://doi.org/10.1007/978-3-319-67035-5_7

14 I. Sokolinskaya, L.B. Sokolinsky

16. Gonzlez-Gutirrez, E., Hernndez Rebollar, L., Todorov, M.I.: Relaxation methods
for solving linear inequality systems: converging results. TOP. 20, 426–436 (2012).

17. Sokolinskaya, I., Sokolinsky, L.: Revised Pursuit Algorithm for Solving Non-
stationary Linear Programming Problems on Modern Computing Clusters with
Manycore Accelerators. In: Supercomputing. RuSCDays 2016. Communications in
Computer and Information Science. pp. 212–223. Springer International Publish-
ing, Cham (2016).

18. Sahni, S., Vairaktarakis, G.: The master-slave paradigm in parallel computer and
industrial settings. Journal of Global Optimization. 9, 357–377 (1996).

19. Silva, L.M., Buyya, R.: Parallel programming models and paradigms. In: High Per-
formance Cluster Computing: Architectures and Systems. Vol. 2. pp. 4–27 (1999).

20. Leung, J.Y.-T., Zhao, H.: Scheduling problems in master-slave model. Annals of
Operations Research. 159, 215–231 (2008).

21. Sokolinsky, L.B.: Analytical Estimation of Scalability of Iterative Numerical Algo-
rithms on Distributed Memory Multiprocessors. http://arxiv.org/abs/1710.10490

22. Darema, F., George, D.A., Norton, V.A., Pfister, G.F.: A single-program-multiple-
data computational model for EPEX/FORTRAN. Parallel Computing. 7, 11–24
(1988).

23. Kostenetskiy, P.S., Safonov, A.Y.: SUSU Supercomputer Resources. In: Proceed-
ings of the 10th Annual International Scientific Conference on Parallel Computing
Technologies (PCT 2016). CEUR Workshop Proceedings. Vol. 1576. pp. 561–573
(2016).

http://arxiv.org/abs/1710.10490

	Scalability Evaluation of NSLP Algorithm for Solving Non-Stationary Linear Programming Problems on Cluster Computing Systems

