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Abstract—The development and investigation of efficient methods of parallel processing of very large data-
bases using the columnar data representation designed for computer cluster is discussed. An approach that
combines the advantages of relational and column-oriented DBMSs is proposed. A new type of distributed
column indexes fragmented based on the domain-interval principle is introduced. The column indexes are
auxiliary structures that are constantly stored in the distributed main memory of a computer cluster. To match
the elements of a column index to the tuples of the original relation, surrogate keys are used. Resource hungry
relational operations are performed on the corresponding column indexes rather than on the original relations
of the database. As a result, a precomputation table is obtained. Using this table, the DBMS reconstructs the
resulting relation. For basic relational operations on column indexes, methods for their parallel decomposi-
tion that do not require massive data exchanges between the processor nodes are proposed. This approach
improves the class OLAP query performance by hundreds of times.
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1. INTRODUCTION

Presently, very large data bases (VLBs) signifi-
cantly affect the field of data processing technologies.
By the predictions of the analytical company IDC, the
amount of data doubles every two years and will reach
44 zettabytes by 2020 [1]. After cleansing and structur-
ing, very large data are transformed into VLDBs and
data warehouses. By Microsoft’s estimates, the
amount of data stored by 62% of large American com-
panies exceeds 100 terabytes [2]. However, modern
database technologies cannot process such large
amounts of data. By the IDC estimates, in 2013 only
22% of the total amount of data were potentially useful
and only 5% were analyzed. By 2020, the percentage of
potentially useful data can reach 35% , mainly due to
the use of embedded systems [1].

In the opinion of a leading expert in databases
M. Stonebraker, very large amounts of data can be
managed using DBMS technologies [3]. DBMSs pro-
vide many useful services not available in file systems,
including schema (to manage the data semantics),
query language (to organize the access to parts of the
database), complex access control systems (data gran-
ulation), services for ensuring the data integrity (data
integrity control and transaction mechanism), data
compression (to reduce the database size), and index-
ing (to speed up query execution).

To process a large amount of data, high-perfor-
mance computer systems are needed [4, 5]. Presently,
this class of computer systems is dominated by systems
with the cluster architecture, where the computer
nodes are equipped with multicore accelerators. Com-
puter clusters occupy 85% of the ТОР500 list of the
most powerful supercomputers in the world [6] (as of
November 2015). More than 50% of computers in the
first hundred in this list use multicore accelerators.
The fastest supercomputer Tianhe-2 (The National
Supercomputer Center in Guangzhou, China) also
has a cluster architecture based on the Intel Xeon Phi
processors. Its total performance is 33.9 PFLOP/S on
the test LINPACK, and the total amount of memory
is 1 petabyte. Recent research show that computer
cluster can be effectively used to store and process very
large databases [7–10]. By the present time, there are
major advances in the development of parallel DBMSs
[11, 12]. A review of the literature on this topic can be
found in [5, 13]. However, a number of open problems
remain in this field that are mainly related to managing
large data [3].

The random access memory as the main storage of
data becomes more and more attractive as the
cost/size ratio decreases exponentially [14–16].
According to the Gartner report, the in-memory
DBMSs will by widely used in 2–5 years [17].

An important class of applications related to pro-
cessing very large databases is the set of applications
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dealing with data warehouses [18–21], for which
OLAP-type queries are typical. Investigations [22–24]
showed that it is reasonable to use the column-ori-
ented model of data representation, which provides
the performance by an order of magnitude higher than
the conventional DBMSs using the row-oriented rep-
resentation of data. The difference in performance is
explained by the fact that the column-oriented data-
bases make a less number of data exchanges with disks
when executing data selection queries because only the
values of the attributes involved in the query are read
from the disk (or from the main memory) [25].
An additional advantage of the column-oriented rep-
resentation is the possibility to use efficient data com-
pression algorithms because each column contains
data of the same type. Compression can improve the
performance by an order of magnitude because the
I/O operations take less time [26]. A disadvantage of
the column-oriented model of data representation is
that it is more difficult to use the efficient SQL query
optimization techniques, which proved to be useful in
relational DBMSs. In addition, the column-oriented
DBMSs are considerably inferior to the row DBMSs
in terms of performance on the class of OLTP queries.

According to the aforesaid, it is important to
develop new efficient methods for the parallel process-
ing of very large databases stored in the main memory
on computer clusters based on multicore accelerators
that would be able to combine the advantages of the
relational model with the column-oriented represen-
tation of data.

The paper is organized as follows. In Section 2, we
review the studies on the column data storage model
and analyze the publications that are closely related to
the topic of the present paper. Section 3 is devoted to
the formal description of the domain-column model
of data representation. Based on this model, in Section
4 we propose a decomposition of the basic relational
operations on distributed column indexes. In Section
5, we describe the architecture and implementation of
a columnar coprocessor for relational DBMSs.
In Section 6, we describe the computational experi-
ments aimed at investigating the efficiency of the pro-
posed models, methods, and algorithms applied to
processing very large databases. In the Conclusions
section, we summarize the main results obtained in
the paper, and discuss the their distinctions from the
results obtained by other authors, give recommenda-
tions on the practical application of column indexes,
and discuss the directions of further research

2. THE COLUMN-ORIENTED MODEL
OF DATA STORAGE

The column-oriented representation of data
assumes that the database tables are stored by separate
columns. The column data storage model has recently
gained in popularity among the researchers in the field
of on-line analytic data processing in data warehouses

[27–30]. In distinction from the conventional row
representation, the column-oriented representation is
much more efficient in the execution of OLAP queries
[25]. This is explained by the fact that, as a column-
oriented DBMS executes a query, it reads from the
disk only the attributes that are needed for the query
execution, which reduces the amount of I/O opera-
tions and, consequently, decreases the query execu-
tion time. A disadvantage of the column-oriented rep-
resentation is the low efficiency in executing row-ori-
ented operations, such as insertion or deletion of
tuples. As a result, the column-oriented DBMSs can
be inferior to the row-oriented DBMSs in the execu-
tion of OLTP queries. Figure 1 illustrates the basic dif-
ferences in the physical layout of column-stores com-
pared to traditional row-oriented databases [29].
Here, three methods for the representation of the Sales
relation containing five attributes are illustrated.
In the column-oriented approach (Figs. 1a and 1b),
each column is stored independently as a separate data
object. Since data is typically read from the storage
and written to the storage in blocks, the column-ori-
ented approach means that each block that holds data
for the sales table holds data for one column only.
In this case, the query that calculates, e.g., the number
of sales of a certain product in July must access only
the columns prodid (the product identifier) and date
(the sale date). Therefore, it is sufficient for the
DBMS to load into the main memory only the blocks
that contain the data for these columns. On the other
hand, in the row-oriented approach (Fig. 1c), there is
just a single data object containing all the data, i.e.,
each block in the storage that holds data for the Sales
table contains data from all columns of the table.
In this way, there is no way to read just the particular
attributes needed for a particular query without also
transferring the surrounding attributes. Taking into
account the fact that the cost of data exchanges with
the disk (or between the processor cash and the main
memory) is a bottleneck of DBMSs and the database
schemata become more and more complex and
include wide tables containing hundreds of attributes,
the column-oriented databases can significantly
improve the performance in the execution of OLAP
queries.

The simplest organization of a column-store is the
addition a column of surrogate keys to each field [31];
the surrogate key is the identifier of the row in the cor-
responding relation. In this case, we obtain the so-
called two-column representation with a surrogate key
(Fig. 1b). In [32], a virtual key mechanism was pro-
posed. In this case, the role of the surrogate key is
played by the ordinal number of the value in the col-
umn Taking into account that all the data in each col-
umn have the same type (occupy the same number of
bytes) and are stored in a continuous memory area,
given the ordinal number of the value, one can deter-
mine the place in the memory occupied by this value.
The th tuple of the relation is reconstructed by select-i
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ing and joining the th values of the columns belonging
to the relation. In this case, we obtain a single-column
representation (Fig. 1a), which saves memory.

The efficiency of data compression in column-ori-
ented databases was studied in [26, 33]. Since all the
values in every column are of the same type, the most
efficient compression method for each data type can
be used. The greatest effect of compression is achieved
in the case when the data is sorted and the column
contains large portions of repeated values. To increase
the speed of query execution, the lightweight data
compression [33] is most appropriate; in this case, the
processor load for the compression and decompres-
sion of data does not outweigh the benefit due to the
reduced data transfer time [34, 35]. In [26, 36, 37], it
was shown that the execution of operations on com-
pressed data can increase the query execution perfor-
mance by an order of magnitude.

A major advantage of row-stores is the availability
of efficient query optimization techniques in row-ori-
ented DBMSs developed based on the relational
model. Another advantage of the row-oriented
DBMSs is the speed of processing of OLTP queries.
For this reason, a considerable effort in the database
research community was aimed at the integration of
the advantages of the column data storage model into
the row-oriented DBMSs [25].

In [38], a new scheme for data mirroring was pro-
posed, which is called the fractured mirror. This
approach uses a hybrid scheme for data storage that
includes both the row-oriented and column-oriented
representation of data. The data modification opera-
tions are performed based on the row-oriented repre-
sentation, and the data read and analysis operations
are performed based on the column-oriented repre-
sentation. The changes made in the row-oriented rep-
resentation are copied to the column-oriented repre-
sentation in a background process. The tables in the
row-oriented representation are divided into frag-
ments that are stored on different disks. Each row frag-
ment is assigned its mirror copy in the column-ori-
ented representation on the same disk using virtual

i keys. This scheme is well suited for the parallel execu-
tion of queries that do not require data exchanges
between nodes. However, the execution of complex
queries that require massive data exchanges between
processor nodes involves large overhead due to mes-
sage transmission. This approach assumes that a
hybrid execution plan is created for each query that
actually consists of a combination of two plans—one
for the row-oriented representation and the other for
the column-oriented representation. The optimiza-
tion of such hybrid queries creates a large number of
difficult problems.

In [31, 39], the Decomposition Storage Model
(DSM), which uses the declusterization of each rela-
tion into columns using surrogate keys (see Fig. 1b),
was proposed. In [25], an attempt to emulate the DSM
using the relational DBMS System X was made. Each
relation was decomposed into columns according to
the number of attributes in the given relation. Each
column was represented by a binary (two-column)
table. The first column contained the surrogate key
identifying the corresponding row in the original table,
and the second column contained the attribute value.
For the query execution, only the columns corre-
sponding to the attributes involved in the query were
loaded from the disk. They were joined by the surro-
gate key into “truncated” tables on which the query
was then executed. By default, System X uses hash
joins for this purpose, which turned out to be very
costly. To overcome this drawback, an attempt to cal-
culate the joins using clustered cluster indexes created
for each column was made; however, due to the index
access, the overheads turned out to be even higher.

The DSM has two disadvantages. First, each table
must contain a column for the surrogate keys, which
requires additional disk memory and data exchanges
with the disk. Second, the majority of row-oriented
DBMSs store a fairly large header along with each
tuple, which also requires additional disk memory (in
column-oriented databases, the headers are stored in
special columns to avoid this overhead). To overcome
these disadvantages, the paper [25] proposed and

Fig. 1. Physical organization of column-store and row-store. (a) Column-store with virtual keys, (b) Column-store with urrogate
keys, (c) Row-srore
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investigated an approach in which the relations are
stored in the conventional row form, and, for each col-
umn of every table, an index in the form of a B-tree is
defined. For the execution of SQL queries, index-only
execution plans were generated. For the execution of
such plans, the actual tuples on the disk are never
accessed. Even though the indexes explicitly store the
identifiers of the stored records, each value of the cor-
responding column is stored only once, and the access
to the column values typically requires less overhead
because the indexes do not store the tuple headers.
Experiments showed that this approach demonstrates
a much lower performance than the column-oriented
DBMs.

Another approach considered in [25] uses materi-
alized views. In this approach, for each class of que-
ries, the optimal set of materialized views is created
that contain only the columns needed for the queries
of this class. In these views, no joins of columns from
different tables are made. The purpose of this strategy
is to enable the DBMS to access only the data on the
disk that are actually needed. This approach performs
better than the approaches based on the DSM and
index-only plans. However, its application requires
the preliminary knowledge of the workload, which
considerably restricts its practical application.

In [40], one more attempt to combine the advan-
tages of the row-stores and column-stores in the
framework of a relational DBMS was made. It was
proposed to store data in a compressed form using a
special table (called the c-table) for each column in the
relational schema (similarly to the method of vertical
decomposition of relations). The data were com-
pressed using the Run-Length Encoding (RLE) [26].
On OLTP queries, this method showed the perfor-
mance comparable with that of the column-oriented
DBMSs. However, this approach requires the creation
of a c-table for each attribute and the creation of a
large number of indexes for each c-table, which
requires a lot of disk memory. In addition, the depen-
dences between tuples in the c-tables result in an
unreasonable cost of insert operations even for appli-
cation with relatively rare updates.

In [41], an alternative approach to using column
query execution methods in row-oriented DBMSs is
described. This method is based on the query execu-
tion plans that use only indexes and special operators
Index Merge, Index Merge Join, and Index Hash Join,
integrated into the DBMS kernel. The proposed
methods are designed for use with solid state drives
and multicore processors. The performance of a row-
oriented DBMS modified in this way on OLAP que-
ries can be comparable with or even higher than the
performance of column-oriented DBMSs.

In [42], new auxiliary data structures—column-
store indexes—used in Microsoft SQL Server 11 are
described. The column store indexes form a purely
column store because the data of different columns are

stored on different disk pages, which considerably
improves the performance of I/O operations.
To improve the performance of the OLTP query exe-
cution, the user should create columnstore indexes for
the corresponding tables. The decision about using the
column store indexes is made by the DBMS, as is the
case for conventional B-tree indexes. The advantages
of the new indexes are illustrated using the TPC DS
benchmark [43]. For the table catalog_sales, a col-
umnstore index containing all 34 columns of this table
is created. Therefore, along with the row storage, Mic-
rosoft SQL Server 11 creates a column storage in
which the data of certain columns of certain tables is
completely duplicated. The columnstore index is con-
structed as follows. The original table is divided into
sequential groups of rows of the same length. The col-
umns of attribute values in each group are encoded
and compressed independently of each other. As a
result, compressed column segments are obtained of
which each is stored as a BLOB (Binary Large Object)
[44]. In the encoding phase, the data are transformed
into integers. Two strategies are supported: (1) encod-
ing of values and (2) encoding by enumeration (as in
enumerated types in universal programming lan-
guages). Next, the column is compressed using the
RLE. To achieve the maximum compression ratio, the
original groups of rows are sorted using the Vertipaq
algorithm. Queries on the column-store in Microsoft
SQL Server 11 are executed using special operators
that support block data processing [45] (the query
executor for the row-store uses the conventional tuple
processing). Note that the block operators are not
applicable to the data stored by rows. Thus, the Mic-
rosoft SQL Server 11 actually implements two inde-
pendent query executors—one for the row-store and
the other for the column-store. By analyzing the
query, the DBMS decides which of the two query
executors should be used. The DBMS also provides
mechanisms for the synchronization of data in both
stores.

The analysis of available solutions [25] shows that
no advantage can be obtained by storing data by col-
umns using a row-oriented DBMS with a vertically
divided schema or by indexing all columns to ensure
the independent access to them. The database systems
with row storage have a considerably lower perfor-
mance than the column-oriented databases on the
Star Schema Benchmark (SSBM) [46–48]. The dif-
ference in performance shows that there are signifi-
cant differences at the level of query execution
between the two systems (in addition to the evident
differences at the level of storage).

3. DOMAIN-COLUMN MODEL

In this section, we describe a new domain-column
model of the data representation and define the con-
cept of the column index.
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We will use the notation for relational operations
adopted in the well-known book [49]. By , we
mean the projection of the relation  onto all the attri-
butes, except for the attribute A. The symbol  denotes
the concatenation of two tuples:

By , we denote the relation R with the
surrogate key A (an integer identifier that uniquely
determines the tuple) and the attributes ; this
relation is the set of tuples of length  of the form

, where  and 
. Here  is the domain of the attribute .

By , we denote the value of the attribute , and
 is the value of the surrogate key of the tuple r: r =

. The surrogate key of the relation 
has the property  ∈ .
The address of the tuple r is the value of this tuple’s sur-
rogate key. To obtain a tuple of the relation R given its
address, we will use the dereferencing function &R:

.
In what follows, we consider relations as sets rather

than as multisets [49]. This means that, when an oper-
ation produces a relation with duplicate elements, the
operation of removing duplicates is applied by default.

Let a relation  ( ) be given, and
let a total order be defined on the set . A column
index  of the attribute B of the relation R is defined
as an ordered relation  satisfying the follow-
ing conditions:

(1)

(2)

(3)

Condition (1) implies that the sets of values of the sur-
rogate keys (addresses) of the index and of the relation
being indexed are identical. Condition (2) implies that
the elements of the index are arranged in increasing of
the attribute B. Condition (3) implies that the attribute
A of an index element contains the address of the tuple
of the relation R that has the same value of the attri-
bute B as this element of the column index.

Informally, the column index  is a table con-
sisting of two columns A and B. The number of rows in
the column index coincides with the number of rows
in the table being indexed. The column B of 
includes all values of the column B of the table R (with
the repeated values taken into account) arranged in
ascending order. Each row x of the index  contains
in its column A the surrogate key (address) of the row
r of the table R that has the same value in the column
B as x. Figure 1 shows examples of two different col-
umn indexes of the same relation.
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Let a total order be defined on the set of values of
the domain . We divide the set  into  non-
overlapping intervals

(4)

Note that, in the case , we have  and
. the function  is

called the domain fragmentation function for  if it
satisfies the condition

(5)

In other words, the domain fragmentation function
assigns to the value b the number of the interval where
this value belongs.

Let a column index  for the relation 
with the attribute B over the domain  and the
domain fragmentation function  be given. The
function

(6)

defined by the rule

(7)

is called the domain-interval fragmentation function for
the index . In other words, the fragmentation
function  assigns to each tuple x in  the
number of the domain interval where the value 
belongs.

Define the th fragment  of the
index  as

(8)

This means that the ith fragment contains the tuples
whose value of the attribute B belongs to the ith
domain interval. Such a fragmentation is said to be the
domain-interval fragmentation. The number of frag-
ments k is called the fragmentation degree.

The domain-interval fragmentation has the follow-
ing fundamental properties, which are immediate
consequences of its definition:

(9)

(10)

Figure 3 schematically illustrates the fragmentation of
the column index of degree .
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Let  and  be column indexes for the relation
. The fragmentation defined by the func-

tion  satisfying the condi-
tion 

(11)

is called a transitive fragmentation of the index  rel-
ative to the index .

The transitive fragmentation makes it possible to
place the elements of the column indexes correspond-
ing to a tuple of the relation being indexed on the same
node.

4. DECOMPOSITION OF RELATIONAL 
OPERATIONS

In this section, we describe the decomposition of
the basic relational operations for distributed column
indexes. This decomposition aims at partitioning the
algorithm of the operation execution into subtasks that
do not require the exchange of data.

Decomposition of the natural join. Consider the
decomposition of the natural join operation

. Let  and
 be two relations, and let

there be two sets of column indexes on the attributes
: , . Suppose that

the domain-interval fragmentation

of degree k be specified for all these indexes. Define
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Let us construct the relation

as follows:

(14)

Then, Q = . A proof of this fact can
be found in [50]. An example of the calculation of the
natural join of two relations using distributed column
indexes is discussed in [51].

Decomposition of the grouping operation. Consider
the decomposition of the grouping operation

. Let the relation

with the surrogate key A be given. Let the aggregation
function agrf for the attributes  be specified,
and let there be the column index . Furthermore,
suppose that we have the column indexes

; . Let the domain-interval

fragmentation  =  of degree k be available
for the index . We also suppose that, for the
indexes  and , there is the
transitive (with respect to ) fragmentation

Define

(15)

for all . Define P = , and con-
struct the relation  as follows

(16)

Then, . A proof of the
validity of this decomposition of the grouping opera-
tion can be found in [52].
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 be relations with an identical set of

attributes. Let  and  be two

sets of column indexes on the attributes .
Suppose that a domain-interval fragmentation of
degree k

be given for these indexes. Define

(17)

for all  and . Define  =

, and set P = . Construct the relation

 as follows:

(18)

Then,  =  ∩ . A proof of

the validity of this decomposition of the intersection
operation can be found in [53].

Using the approach described above, we also
decomposed the operations of projection, selection,
removing duplicate rows, and union operations (see
[54]).

5. THE COLUMNAR COPROCESSOR CCOP

Based on the domain-column model of data repre-
sentation described in Section 3 and the decomposi-
tion of relational operations, we developed a software
called Columnar COProcessor (CCOP) for computer
clusters. In this section, we describe the architecture
and implementation of the CCOP.

CCOP is a software designed for managing distrib-
uted column indexes placed in the main memory of
the computer cluster. The purpose of the CCOP is to
build the precomputation tables (PCTs) for resource
hungry relational operations at the request of the
DBMS. The schematic of the interaction between the
DBMS and the CCOP is shown in Fig. 4. The CCOP
includes the program Coordinator run on the node 0 of
the cluster and the program Executor run on all other
nodes assigned for the CCOP. A special CCOP driver is
installed on the SQL server; this driver controls the
interaction with the CCOP coordinator via the
TCP/IP protocol. The CCOP works only with 32 and
64-byte integers. When column indexes for the attri-
butes of other types are created, their values are
encoded to integers or vector of integers. The CCOP
supports the following basic operations, which can be
used by the DBMS via the CCOP driver interface:
CreateColumnIndex (creation of a distributed column
index), Execute (building a PCT), Insert (insertion of
a new tuple into the column index), TransitiveInsert
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(insertion of a new tuple into the column index by the
transitive value), Delete (deletion of a tuple from the
column index), and TransitiveDelete (deletion of a
tuple from the column index by the transitive value).

To organize the interaction between the driver and
the CCOP, a language CCOPQL (CCOP Query Lan-
guage) based on the JSON data format was developed.
Each column index is divided into fragments, which,
in turn, are divided into segments. All segments of a
fragment are stored in the main memory of one pro-
cessor node in a compressed form. The fragments are
compressed using the Zlib library [55, 56], which
implements the DEFLATE compression method
[57], which is a combination of the Huffman and the
Lempel–Ziv compression methods.

We explain the operation of the CCOP using a sim-
ple example. Let a database contain two relations

 and  stored in a SQL server (see
Fig. 5). Suppose we want to execute the query

SELECT D, С

FROM R, S

WHERE R.B = S.B AND C < 13.

Let the CCOP have only two executor nodes, and
let each node have three processor cores (the cores are

labeled by  in Fig. 5). Let the attributes 

and  be defined on the domains of integers in the

interval [0; 120). The segment intervals for  and

 are , , , , , and

. As the fragment intervals for  and 

we use [0; 59] and [60, 119]. Let the attribute  be

defined on the integer domain . Initially, the
database administrator creates the distributed column

indexes  and  for the attributes  and 
using the CCOP driver. Next, the distributed column

index  is created for the attribute , which is frag-
mented and segmented transitively with respect to the

index . The distributed column indexes , ,

and  are stored in the main memory of the executor
nodes. Thus, we obtain the distribution of data inside
the CCOP illustrated in Fig. 5. Upon receiving the
SQL query, it is transformed by the CCOP driver into
the plan defined by the following relational expres-
sion:

When the driver performs the Execute operation, this
query is passed to the CCOP coordinator in the form
of the CCOPQL operator in JSON. The query is exe-
cuted independently by the cores of the executor nodes
over the corresponding groups of segments. Due to the
domain fragmentation and segmentation, no data
exchanges between the executor nodes and between
the cores of one node are needed. Each core computes
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its part of the PCT, which is sent to the coordinator
node. the coordinator joins the PCT fragments into a
unified table and sends it to the driver, which materi-
alizes this table as a relation in the database on the
SQL server. Then, instead of the original query, the
SQL server executes the query

SELECT D, C

FROM

R INNER JOIN (

ТПВ INNER JOIN S ON (S.A = ТПВ.AS)

) ON (R.A = ТПВ.AR).

The execution uses the conventional clustered B-
tree indexes that were preliminary built for the attri-
butes R.A and S.A.

The CCOP was implemented in C using hardware
independent parallel programming technologies MPI
and OpenMP. The size of the source code, which is
available on the Internet at https://github.com/elena-
ivanova/colomnindices/, is about 2500 lines.

6. COMPUTATIONAL EXPERIMENTS

In this section, we discuss the results of the compu-
tational experiments aimed at the investigation of effi-
ciency of the proposed models, methods, and algo-
rithms for processing very large databases using col-
umn indexes.

The experiments were performed on two computer
clusters Tornado in South Ural State University and
RSC PetaStream in the Joint Supercomputer Center
(JSCC) of the Russian Academy of Sciences. Tornado
[58] includes 384 processor nodes connected by the
InfiniBand QDR and Gigabit Ethernet networks.
Each processor node includes two six-core Intel Xeon
X5680 CPUs, 24 GB of memory, and an Intel Xeon

Phi SE10X coprocessor (61 cores clocked at 1.1 GHz)
connected by the PCI Express bus. RSC PetaStream
[59] consists of eight modules consisting of eight Intel
Xeon Phi 7120 coprocessors of which each has 61 cores
and 16 GB of GDDR5 memory. The modules are
connected by the InfiniBand FDR and Gigabit Ether-
net networks. The Linux CentOS 7.0 is loaded on each
coprocessor (on one core).

The CCOP was tested using a synthetic database
built based on the benchmark TPС-H [60].

The test database consists of two tables ORDERS
and CUSTOMER. The structure of these tables is
described in [61]. To simulate skewed data the follow-
ing distributions of the values of the attribute
ORDERS.ID_CUSTOMER (the foreign key deter-
mining the customer who made the order): uniform,
45–20, 65–20, and 80–20 [62]. To vary the relation
size, we used the selectivity coefficient Sel that takes

values in the interval . The coefficient Sel deter-
mines the size (in tuples) of the resulting relation rela-
tive to the size of the ORDERS relation. The database
was scaled using the scale factor SF the value of which
varied from 1 to 10. In our experiments, the size of the
ORDERS relation was SF × 63000000 tuples, and the
size of the CUSTOMER relation was SF × 630000
tuples.

In the first experiment, we investigated the balance
of the Xeon Phi core workload under various skews in
the distribution of the values of the foreign key
ORDERS.ID_CUSTOMER. The results are illus-
trated in Fig. 6. It is seen from the plots in this figure
that when the number of segments is small, a heavy
disbalance in data results in a significant disbalance in
the workload of the cores. When the number of seg-
ments coincides with the number of cores (60), the
execution time of the operation in the case of the dis-
tribution 80–20 exceeds the execution time of the
same operation for the uniform distribution by a factor
four and more. However, when the number of seg-
ments increases, the effect of data disbalance is
smoothed. For the distribution 45–20, the optimal

;]0 1]

Fig. 3. Fragmentation of a column index.
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number of segments is 10000, for he distribution 65–

20, it is 20000, and for the distribution 80–200000.

The purpose of the second experiment was to

determine how efficient is the application of hyper-

threading for the CCOP operation. The CPU Intel

Xeon X5680 has hardware support for two threads per

core, and the coprocessor Intel Xeon Phi supports four

threads per core. The experimental results are illus-

trated in Fig. 7. It is seen that, in the case of the CPU,

the performance increases up to the use of the maxi-

mum number of hardware supported threads. How-

ever, if only one thread per core is used, the speedup is

almost perfect, while in the case of two threads per

core, the speedup is lower. As applied to MIC, the pic-

ture is different. When only one thread per core is

used, the speedup is almost perfect. In the case of two

threads per core, the speedup is lower. The use of the

greater number of threads per core results in the deg-

radation of performance.

In the third and fourth experiments, we investi-

gated the scalability of CCOP on massively parallel

computers. Figure 8 shows the speedup plots for the

case of computation of PCTs by the CCOP on the Tor-

nado cluster; Fig. 9 shows similar plots for RSC PetaS-

tream. The plots in Fig. 8 show that the selectivity 

of the query is a factor that restricts the scalability. For

example, for Sel = 0.0005, the speedup curve is almost

linear, and for Sel = 0.005, it is close to linear. How-

ever, when the selectivity coefficient is large (Sel =

0.05), the scalability is restricted to 150 processor

nodes. The cause is that at Sel = 0.05, the time needed

to transfer, decompress, and merge the PCT varies

Sel

Fig. 5. Calculating the PCT using CCOP. 
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insignificantly and considerably exceeds the time
needed to compute the PCT; at Sel = 0.0005, the time
needed to transfer, decompress, and merge the PCT is
almost by an order of magnitude less than the time
needed for its computation. Hence, we conclude that,
when the query selectivity is small, CCOP demon-
strates an almost linear speedup on large databases.

A similar picture was observed in testing the CCOP
on the RSC PetaStream cluster (Fig. 9). In the next
experiment, we investigated how much the use of the
CCOP can speed up the execution of OLAP queries in
a relational DBMS. In the experiment, we investigated
three configurations:

1. PostgreSQL: the execution of a query without
creating B-tree index files;

2. PostgreSQL & B-Trees: the execution of a query
with the preliminary created B-tree index files for the
join attributes;

3. PostgreSQL & CCOP: the execution of a query
with the use of the PCT and the preliminary creation
of B-tree index files for the surrogate keys.

In the last case, the query execution time was
increased by the time needed for the CCOP to create
the PCT. In each case, the time of the first and the
repeated run of the query was measured. This is
because PostgreSQL collects statistical data stored in
the database dictionary and uses it to optimize the
query execution plan. The experiments showed (see
table) that, in the absence of B-tree indexes, the use of
the columnar coprocessor speeds up the execution of
queries by a factor of 100–150 for the selectivity coef-
ficient Sel = 0.0005. However, if the selectivity coeffi-
cient is large, the efficiency of using CCOP is reduced
and can even become negative (the speedup can
become less than unity).

7. CONCLUSIONS

The development and investigation of efficient
methods for the parallel processing of very large data-
bases using the column-oriented data representation
for computer clusters with multicore coprocessors that
can be integrated into relational DBMSs was consid-
ered. Column indexes with surrogate keys are intro-

Fig. 6. Load balancing for the Xeon Phi coprocessor.
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duced. A domain–column model for the distribution
of data over the nodes of the computer cluster is pro-
posed. Based on this model, formal methods for the
decomposition of relational operations into parts that
can be executed independently (without data
exchanges) on different processor nodes and cores
were developed. The validity of all decomposition
methods was rigorously proved. The proposed meth-
ods are implemented in the columnar coprocessor
CCOP that can work on computer clusters including
those that are equipped with multicore coprocessors;
it can be used in combination with a relational DBMS
for executing resource hungry operations. The DBMS
interacts with the CCOP via a special driver running
on the SQL server on which the DBMS runs. This
interaction is organized via a special connector
embedded into the DBMS code.

The main results discussed in this paper are new—
they are not covered in the publication of other
authors that were reviewed in Section 2.

In [42], the columnstore indexes used in Microsoft
SQL Server 11 are described. Essentially, this
approach assumes the creation of two independent
query executors in the DBMS —one for the row-store
and the other for the column-store. The approach
described in this paper assumes a software implemen-
tation of the column indexes—the columnar copro-
cessor CCOP. In addition, [42] provides no details on
the fragmentation of the columnstore indexes and on
the methods used to parallelize operations on the col-
umnstore indexes. We also note that the columnstore
indexes in the Microsoft SQL Server 11 are repre-
sented in BLOB fields stored on disks, while in the
CCOP they are distributed and stored in the main
memory.

The methods for embedding column-oriented
query processing into a row-oriented DBMS that were
proposed in [41] require a significant modification of
the DBMS; they do not suit for running on computer
clusters with distributed memory. In distinction, the
CCOP requires a minimum modification of the
CCOP by adding a special connector to it, and it shows

almost linear scalability on computer clusters with
hundreds of processor nodes and tens of thousands of
cores. In [40], additional data structures called c-
tables were introduced that resemble the CCOP col-
umn indexes, but the issues concerning data distribu-
tion and parallel processing are not discussed.

The approach to the emulation of the column-store
in a row-oriented DBMS based on materialized views
[25] precludes the use of columns from different tables
in one view, which restricts the application of this
approach for the parallel execution of joins in multi-
processor systems with distributed memory. By con-
trast, the CCOP can execute joins without exchanging
data on computer clusters with a large number of pro-
cessor nodes.

The fractured mirror approach proposed in [38]
makes it possible to organize the efficient parallel pro-
cessing of fragment-independent queries in the col-
umn-like style on computer clusters. However, if the
query depends of the method of fragmentation, the
system’s performance is degraded due to the large
number of data transfers between the nodes. The
domain-interval fragmentation used in the CCOP
allows one to avoid data exchange. The other
approaches to emulation described in [25] are not
considered here because they have lower performance
compared with the conventional relational DBMSs.
In distinction from them, the CCOP speeds up the
execution of queries on the data store by a factor of
several hundred compared with the relational DBMS
PostgreSQL.

The results obtained in this paper can be used for
the creation of scalable columnar coprocessors for the
existing commercial and free DBMSs. This makes it
possible to process very large data stores on computer
clusters including the computer systems whose nodes
include multicore GPU or MIC coprocessors.

The amount of memory needed for storing the col-
umn indexes can be estimated on the standard TPC-H
benchmark [60] used for the simulation of processing
of analytical databases. The number of rows in all

Fig. 8. Speedup of the PCT computation on the Tornado
cluster at .
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tables of the TPC-H is  with the scaling coef-
ficient SF = 1. Assume that three column indexes are
created for each table. Our experiments show that the
column indexes are compressed with the factor three
on average. Taking into account the fact that each
record of the column index consists of two 8-byte
fields, we conclude that the amount of memory
needed to storing the column indexes at SF = 1 is

 ×  GB. At SF = 30000,

which corresponds to an average size database, the
required amount of memory is 4.2 TB. At the maxi-

mum , which corresponds to a large
database, the amount of memory needed for storing
the column indexes is 14 TB. The total amount of
memory available in the cluster Tornado [58] (384
nodes with the memory of 24 GB and 96 nodes with
the memory of 48 GB) is 13.8 TB. This cluster occu-
pies place 349 in the 46th edition of the TOP500 list of
the most powerful computer systems (as of November
2015); thus it is a medium power cluster. The estimates
above show that the main memory of such a computer
is sufficient for storing medium size analytical data-
bases. For very large databases, more powerful com-
puters are needed. Note that number one computer in
the 46th edition of the TOP500 list (as of November
2015) has the memory of one petabyte, which is quite
enough for storing column indexes of a very large ana-
lytical database.

The further lines of research can be as follows.

• Development and investigation of methods for
the integration of the CCOP into free relational
DBMSs like PostgreSQL.

• Integration of lightweight compression methods
into the CCOP that do not require decompression for
performing operations on data.

• Extension of the proposed approaches and
methods to multidimensional data.
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