4. Logical optimization

Logical optimization

- Algebraic Laws
- Improving the logical query plan

Algebraic laws

- Commutative and associative laws
- Laws involving selection
- Laws involving projection
- Laws about joins and product

Commutative and Associative Laws

Operation	Commutativity	Associativity
Cartesian product	$R \times S=S \times R^{1)}$	$(R \times S) \times T=R \times(S \times T)$
Natural join	$R \bowtie S=S \bowtie R^{1)}$	$(R \bowtie S) \bowtie T=R \bowtie(S \bowtie T)^{2)}$
Union	$R \cup S=S \cup R$	$(R \cup S) \cup T=R \cup(S \cup T)$
Intersection	$R \cap S=S \cap R$	$(R \cap S) \cap T=R \cap(S \cap T)$

${ }^{1)}$ The order of columns changes.
${ }^{2)}$ Natural join of three relations is performed on attributes which are common for all the relations.

Restricted associativity of theta-join

$$
\begin{array}{|c|c}
\hline \text { Commutativity } & \text { Associativity } \\
\hline R \underset{\theta}{\bowtie} S=\underset{\theta}{\bowtie} R & ? \\
\hline
\end{array}
$$

$$
R(A, B) ; S(C, D) ; T(E, F)
$$

$$
\begin{aligned}
& R \underset{B=C}{\bowtie}(S \underset{D=E}{\bowtie} T)=(R \underset{B=C}{\bowtie} S) \underset{D=E}{\bowtie} T \\
& R \underset{A=F}{\bowtie}(S \underset{D=E}{\bowtie} T) \neq(R \underset{A=E}{\bowtie} S) \underset{D=E}{\bowtie} T
\end{aligned}
$$

Laws involving selection

1. $\sigma_{C_{1} \& C_{2}}(R)=\sigma_{C_{1}}\left(\sigma_{C_{2}}(R)\right)$
2. $\sigma_{C_{1}}\left(\sigma_{C_{2}}(R)\right)=\sigma_{C_{2}}\left(\sigma_{C_{1}}(R)\right)$
3. $\sigma_{A<x}(R \underset{(A)}{\ltimes} S)=\left(\sigma_{A<x}(R)\right) \underset{(A)}{\bowtie}\left(\sigma_{A<x}(S)\right)$

Laws involving projection

1. $\pi_{\alpha}(R \bowtie S)=\pi_{\alpha}\left(\pi_{\beta}(R) \bowtie \pi_{\gamma}(S)\right)$
2. $\pi_{\alpha}(\underset{\theta}{\text { ® }} S)=\pi_{\alpha}\left(\pi_{\beta}(R) \underset{\theta}{\bowtie} \pi_{\gamma}(S)\right)$
3. $\pi_{\alpha}(R \times S)=\pi_{\alpha}\left(\pi_{\beta}(R) \times \pi_{\gamma}(S)\right)$

Projection over natural join

$$
\pi_{\alpha}(R \bowtie S)=\pi_{\alpha}\left(\pi_{\beta}(R) \bowtie \pi_{\gamma}(S)\right)
$$

β - the join attributes and the attributes of α that are found among the attributes of R
γ - the join attributes and the attributes of α that are found among the attributes of S

Projection over theta-join

$$
\pi_{\alpha}(R \underset{\theta}{\bowtie} S)=\pi_{\alpha}\left(\pi_{\beta}(R) \bowtie \pi_{\gamma}(S)\right)
$$

β - the join attributes (i.e., those mentioned in condition θ) and the attributes of α that are found among the attributes of R
γ - the join attributes (i.e., those mentioned in condition θ) and the attributes of α that are found among the attributes of S

Projection over cartesian product

$$
\pi_{\alpha}(R \times S)=\pi_{\alpha}\left(\pi_{\beta}(R) \times \pi_{\gamma}(S)\right)
$$

β - the attributes of α that are found among the attributes of R
γ - the attributes of α that are found among the attributes of S

Laws about joins and product

$$
\begin{aligned}
& \text { 1. } \quad R \underset{\theta}{\bowtie} S=\sigma_{\theta}(R \times S) \\
& \text { 2. } \quad R \underset{(A)}{\bowtie} S=\pi_{R . *, S . *-S . A}\left(\sigma_{R . A=S . A}(R \times S)\right)
\end{aligned}
$$

$$
R \underset{\mathrm{C}>\mathrm{E}^{*} 1000}{\bowtie} S=\sigma_{\mathrm{C}>\mathrm{E}^{*} 1000}(R \times S)
$$

R			S		
A^{*}	B	C	D*	F	E
1	20	600	1	3	0.2
2	40	300	2	1	0.7
3	20	150	3	1	0.5
4	10	300			

$\underset{\substack{\mathrm{CP} \mathbb{F}^{1000} \\ \mathrm{~S}}}{ }$					
A^{*}	B	C	D*	F	E
1	20	600	1	3	0.2
1	20	600	3	1	0.5
2	40	300	1	3	0.2
4	10	300	1	3	0.2

1) $Q=R \times S$					
\mathbf{A}^{*}	\mathbf{B}	\mathbf{C}	\mathbf{D}^{*}	\mathbf{F}	\mathbf{E}
1	20	600	1	3	0.2
1	20	600	2	1	0.7
1	20	600	3	1	0.5
2	40	300	1	3	0.2
2	40	300	2	1	0.7
2	40	300	3	1	0.5
3	20	150	1	3	0.2
3	20	150	2	1	0.7
3	20	150	3	1	0.5
4	10	300	1	3	0.2
4	10	300	2	1	0.7
4	10	300	3	1	0.5

2) $\sigma_{\mathrm{C}>\mathrm{E} * 1000}(Q)$

\mathbf{A}^{*}	\mathbf{B}	\mathbf{C}	\mathbf{D}^{*}	\mathbf{F}	\mathbf{E}
1	20	600	1	3	0.2
1	20	600	3	1	0.5
2	40	300	1	3	0.2
4	10	300	1	3	0.2

$$
R \underset{(A)}{\bowtie} S=\pi_{R . *, S . *-S . A}\left(\sigma_{R . A=S . A}(R \times S)\right)
$$

R				S		
A^{*}	B	C		D*	$\mathrm{A}^{\text {\# }}$	E
1	20	100		1	3	0.2
2	40	300	x	2	1	0.5
3	20	100		3	1	0.5
4	10	300	$\mathrm{W}=\mathrm{R} \bowtie$ ($\mathrm{S}^{\text {d }}$			
			B	C	D*	E
		1	20	100	2	0.5
		1	20	100	3	0.5
		3	20	100	1	0.2

1) $Q=R \times S$					
R.A*	B	C	D*	S. ${ }^{\text {\# }}$	E
1	20	100	1	3	0.2
1	20	100	2	1	0.5
1	20	100	3	1	0.5
2	40	300	1	3	0.2
2	40	300	2	1	0.5
2	40	300	3	1	0.5
3	20	100	1	3	0.2
3	20	100	2	1	0.5
3	20	100	3	1	0.5
4	10	300	1	3	0.2
4	10	300	2	1	0.5
4	10	300	3	1	0.5

3) $\mathrm{W}=\pi_{R, *, S, *-S . A}(P)$

\mathbf{A}^{*}	\mathbf{B}	\mathbf{C}	\mathbf{D}^{*}	\mathbf{E}
1	20	100	2	0.5
1	20	100	3	0.5
3	20	100	1	0.2

2) $P=\sigma_{R . A=S . A}(Q)$

$\mathbf{R}^{*} \mathbf{A}^{*}$	\mathbf{B}	\mathbf{C}	\mathbf{D}^{*}	S.A *	\mathbf{E}
1	20	100	2	1	0.5
1	20	100	3	1	0.5
3	20	100	1	3	0.2

Improving the logical query plan

- Optimization with selection
- Optimization with projection
- Optimization with duplicate eliminations
- Optimization by composing the selection and cartesian product

Optimization with selection

- Selections can be pushed down the tree as far as they can go (it reduces the size of intermediate relations and may therefore be beneficial).
- If a selection condition is the AND of several conditions, then we can split the condition and push each piece down the tree separately.

Optimization with projection

- Projections can be pushed down the tree (it reduces the size of intermediate relations and may therefore be beneficial).
- New projections can be added.

Optimization with duplicate eliminations

- Duplicate eliminations can be pushed down the tree as far as they can go (it reduces the size of intermediate relations and may therefore be beneficial).
- Redundant duplicate eliminations can be eliminated. Relation that is known not to have duplicates:
- A stored relation with a declared primary key
- The result of a γ operation, since grouping creates a relation with no duplicates

Optimization by composing the selection and cartesian product

The selection having equality as a condition can be combined with a product below to turn into an equijoin, which is generally much more efficient to evaluate than are the two operations separately.

> Database schema:
> R(A,C); S(C,D)

Optimization by composing the selection and cartesian product

The selection having inequality as a condition can be combined with a product below to turn into an theta-join, which is generally much more efficient to evaluate than are the two operations separately.

Database schema:
R(A,B); S(C,D)

Example of logical optimization

// IDs of suppliers which have rating greater than 50 and supply red parts.

```
SELECT
    ID_S
FROM
    S, SP, P
WHERE
    Rating > 50 AND
    S.ID_S = SP.ID_S AND
    SP.ID_P = P.ID_P AND
    Color = 'Red'
```


Size of intermediate relations

Pushing selections down the tree

Pushing selections down the tree

Pushing selections down the tree

Replacement of selection and cartesian product by equijoin

Size of intermediate relations

S:	200 tuples
SP:	3000 tuples
P:	400 tuples
SP x P:	$3000^{*} 400=1200000$
S x SP \times P:	$1200000^{*} 200=240000000$

- Red parts: 10%
- Suppliers with rating > 50: 1%
- Supplies of red parts: 20%
- Suppliers supplying red parts: 50\%

Pushing projections down the tree

