
© Leonid B. Sokolinsky System programming department of SUSU 17.01.2016

Database system implementation

1

3. Query conversion

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

2

Outline of query compilation
SQL query Parser &

Preprocessor
Parse tree

(normalized)

Physical query
plan generator

Logical plan

Logical query
plan generator

Physical
plan

Query execution

Query
optimization

Database system implementation

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 3

Query conversion

Parse tree Logical plan

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 4

Logical plan
• Logical plan of query execution is a tree which

nodes are the relational operations, and leaves are
the relations.

• The logical plan unambiguously corresponds to a
relational algebra expression.

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 5

Query conversion
• Conversion of simple query
• Conversion of complex query

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 6

Conversion of simple query
• Simple query is a <SFW> construct with a

<Condition> that has no subqueries.

SELECT A, D
FROM R,S
WHERE E>5 AND R.C=S.C;

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 7

Conversion of simple query
to relational algebra expression

1. The cartesian product of all the relations
mentioned in the <FromList>, which is the
argument of:

2. A selection σC, where C is the <Condition>
expression, which is the argument of:

3. A projection πL, where L is the list of attributes
in the <SelList>.

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 8

Conversion of simple query
Database schema:

R(A,B,C); S(C,D,E)SELECT A, D
FROM R,S
WHERE E>5
AND R.C=S.C; Parse

tree

πA,D(σE>5 & R.C=S.C(R×S))
πA,D

σE>5 & R.C=S.C
×

R S
Logical plan

SQL query

Relational algebra expression

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 9

Conversion of complex query
Complex query is a <SFW> construct with a
<Condition> that has a subquery.

SELECT *
FROM R
WHERE C IN

(SELECT C
FROM S
WHERE D > 5);

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 10

Two-argument selection
• First argument - relation,
• Second argument - condition

<Condition>R

σ

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 11

Conversion of complex query
1. To construct a logical plan using the two-

argument selection.
2. Replace the two-argument selection by a one-

argument selection and other operations of
relational algebra.

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 12

Subquery in the condition is
uncorrelated

Database schema:
R(A,B,C); S(C,D,E)

SELECT *
FROM R
WHERE R.C IN

(SELECT S.C
FROM S
WHERE D > 5);

<Condition>R

S

σ

σD>5

πCR.C IN
The subquery’s relation can be computed
once and for all, independent of the tuple
of outer query being tested.

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 13

Replacement of two-argument selection
by one-argument selection

R
×

σR.C=S.C

πR.*

<Condition>R

S

σ

σD>5

πCR.C IN

S
σD>5

πC

δ

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 14

Correlated subquery
To calculate the names of suppliers having deposit
which is less then the average price of all theirs
supplies.
SELECT
FROM
WHERE

SELECT
FROM
WHERE

);

Name_S
S

Deposit < (
AVG(Price*Amount)

SP
S.ID_S = SP.ID_S

AVG – calculates the average value.

© Leonid B. Sokolinsky 3. Query conversion

Algorithm for correlated subquery
1. To introduce the aliases S1 and S2 for S
2. To use two-argument selection
3. To introduce the additional attribute AP (average

price) in grouping operation
4. To replace the two-argument selection

by the one-argument selection

17.01.2016

Database system implementation 15

© Leonid B. Sokolinsky 3. Query conversion 17.01.2016

Database system implementation 16

Introduction of aliases S1 and S2 for S
SELECT Name_S
FROM S
WHERE Deposit < (

SELECT AVG(Price*Amount)
FROM SP
WHERE S.ID_S = SP.ID_S);

SELECT Name_S
FROM S S1
WHERE Deposit < (

SELECT AVG(Price*Amount)
FROM S S2, SP
WHERE S2.ID_S = SP.ID_S
AND S1.ID_S = S2.ID_S);

© Leonid B. Sokolinsky 3. Query conversion

Use of two-argument selection
17.01.2016

Database system implementation 17

<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×
S S2

σS1.ID_S=S2.ID_S & S2.ID_S = SP.ID_S

γAVG(Price*Amount)

SELECT Name_S
FROM S S1
WHERE Deposit < (

SELECT AVG(Price*Amount)
FROM S S2, SP
WHERE S1.ID_S = S2.ID_S
AND S2.ID_S = SP.ID_S);

© Leonid B. Sokolinsky 3. Query conversion

Introduction of S2 attributes and additional attribute
AP (average price) in grouping operation

17.01.2016

Database system implementation

<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×

S S2

σS1.ID_S=S2.ID_S & S2.ID_S = SP.ID_S

γAVG(Price*Amount)

<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×
S S2

σS2.ID_S = SP.ID_S

γS2.*, AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

πAP

18

© Leonid B. Sokolinsky 3. Query conversion

Replacement of two-argument selection
by one-argument selection

17.01.2016

Database system implementation 19

<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×
S S2

σS2.ID_S = SP.ID_S

γS2.ID_S,AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

πAP
S S1

SP
×

S S2

σS2.ID_S = SP.ID_S

γS2.*, AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

×

σS1.Deposit < AP

πS1.Name_S

δ

© Leonid B. Sokolinsky 3. Query conversion

Logical optimization
17.01.2016

Database system implementation 20

S S1

SP
×

S S2

σS2.ID_S = SP.ID_S

γS2.ID_S,AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

×

σS1.Deposit < AP

πS1.Name_S

δ
S S1

SP

S S2

γS2.*, AVG(Price*Amount) → AP

σDeposit < AP

πS1.Name_S

Duplicate elimination after
grouping is always redundant!

© Leonid B. Sokolinsky 3. Query conversion

Elimination of aliases
17.01.2016

Database system implementation 21

S S1

SP

S S2

γ S2.*, AVG(Price*Amount) → AP

σDeposit < AP

πS1.Name_S

S

SP

S

γ S.*, AVG(Price*Amount) → AP

σDeposit < AP

πS.Name_S

© Leonid B. Sokolinsky 3. Query conversion

Elimination of redundant natural join
17.01.2016

Database system implementation 22

SP

S

γ S.*, AVG(Price*Amount) → AP

σDeposit < AP

πS.Name_S

S

SP

S

γ S.*, AVG(Price*Amount) → AP

σDeposit < AP

πS.Name_S

