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Query conversion

Parse tree Logical plan
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Logical plan
• Logical plan of query execution is a tree which 

nodes are the relational operations, and leaves are 
the relations.

• The logical plan unambiguously corresponds to a 
relational algebra expression.
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Query conversion
• Conversion of simple query
• Conversion of complex query
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Conversion of simple query
• Simple query is a <SFW> construct with a 

<Condition> that has no subqueries.

SELECT A, D
FROM R,S
WHERE E>5 AND R.C=S.C; 
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Conversion of simple query
to relational algebra expression

1. The cartesian product of all the relations 
mentioned in the <FromList>, which is the 
argument of: 

2. A selection σC, where C is the <Condition> 
expression, which is the argument of:

3. A projection πL, where L is the list of attributes 
in the <SelList>.
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Conversion of simple query
Database schema: 

R(A,B,C); S(C,D,E)SELECT A, D
FROM R,S
WHERE E>5
AND R.C=S.C; Parse 

tree

πA,D(σE>5 & R.C=S.C(R×S))
πA,D

σE>5 & R.C=S.C
×

R S
Logical plan

SQL query

Relational algebra expression
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Conversion of complex query
Complex query is a <SFW> construct with a 
<Condition> that has a subquery.

SELECT *
FROM R
WHERE C IN

( SELECT C
FROM S
WHERE D > 5 ); 
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Two-argument selection
• First argument - relation, 
• Second argument - condition

<Condition>R

σ
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Conversion of complex query
1. To construct a logical plan using the two-

argument selection.
2. Replace the two-argument selection by a one-

argument selection and other operations of 
relational algebra.
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Subquery in the condition is
uncorrelated

Database schema: 
R(A,B,C); S(C,D,E)

SELECT *
FROM R
WHERE R.C IN

(SELECT S.C
FROM S
WHERE D > 5); 

<Condition>R

S

σ

σD>5

πCR.C IN
The subquery’s relation can be computed 
once and for all, independent of the tuple 
of outer query being tested.
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Replacement of two-argument selection 
by one-argument selection

R
×

σR.C=S.C

πR.*

<Condition>R

S

σ

σD>5

πCR.C IN

S
σD>5

πC

δ
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Correlated subquery
To calculate the names of suppliers having deposit 
which is less then the average price of all theirs 
supplies.
SELECT
FROM
WHERE

SELECT
FROM
WHERE

);

Name_S
S

Deposit < (
AVG(Price*Amount)

SP
S.ID_S = SP.ID_S

AVG – calculates the average value.
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Algorithm for correlated subquery
1. To introduce the aliases S1 and S2 for S
2. To use two-argument selection
3. To introduce the additional attribute AP (average 

price) in grouping operation
4. To replace the two-argument selection 

by the one-argument selection
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Introduction of aliases S1 and S2 for S
SELECT Name_S
FROM S
WHERE Deposit < (

SELECT AVG(Price*Amount)
FROM SP
WHERE S.ID_S = SP.ID_S);

SELECT Name_S
FROM S S1
WHERE Deposit < (

SELECT AVG(Price*Amount)
FROM S S2, SP
WHERE S2.ID_S = SP.ID_S
AND S1.ID_S = S2.ID_S);
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<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×
S S2

σS1.ID_S=S2.ID_S & S2.ID_S = SP.ID_S

γAVG(Price*Amount)

SELECT Name_S
FROM S S1
WHERE Deposit < (

SELECT AVG(Price*Amount)
FROM S S2, SP
WHERE S1.ID_S = S2.ID_S
AND S2.ID_S = SP.ID_S);
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Introduction of S2 attributes and additional attribute 
AP (average price) in grouping operation
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<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×

S S2

σS1.ID_S=S2.ID_S & S2.ID_S = SP.ID_S

γAVG(Price*Amount)

<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×
S S2

σS2.ID_S = SP.ID_S

γS2.*, AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

πAP

18
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Replacement of two-argument selection 
by one-argument selection

17.01.2016

Database system implementation 19

<Condition>S S1

SP

σ

πS1.Name_S

S1.Deposit <

×
S S2

σS2.ID_S = SP.ID_S

γS2.ID_S,AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

πAP
S S1

SP
×

S S2

σS2.ID_S = SP.ID_S

γS2.*, AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

×

σS1.Deposit < AP

πS1.Name_S

δ
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S S1

SP
×

S S2

σS2.ID_S = SP.ID_S

γS2.ID_S,AVG(Price*Amount) → AP

σS1.ID_S=S2.ID_S

×

σS1.Deposit < AP

πS1.Name_S

δ
S S1

SP


S S2

γS2.*, AVG(Price*Amount) → AP


σDeposit < AP

πS1.Name_S

Duplicate elimination after 
grouping is always redundant!
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S S1

SP


S S2

γ S2.*, AVG(Price*Amount) → AP


σDeposit < AP

πS1.Name_S

S

SP


S

γ S.*, AVG(Price*Amount) → AP


σDeposit < AP

πS.Name_S
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SP


S

γ S.*, AVG(Price*Amount) → AP

σDeposit < AP

πS.Name_S

S

SP


S

γ S.*, AVG(Price*Amount) → AP


σDeposit < AP

πS.Name_S


