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Convex Feasibility Problem

• The problem of finding a point in the 

intersection of a finite family of closed convex 

sets in the Euclidean space

• Applications

– Image reconstruction

– Quantum information science

– Asset-liability management

– Scheduling

– Algorithmic trading
2
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Non-Stationary Linear Feasibility 

Problem

• 𝑥 ∈ ℝ𝑛

• 𝐴(𝑡) – matrix 𝑚 × 𝑛

• 𝑏(𝑡) – vector of dimension n

• 𝑡 ∈ ℝ≥0 – time
3

𝐴(𝑡)𝑥 ≤ 𝑏(𝑡)

Very Big System 
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Geometric Interpretation of 

Linear Feasibility Problem 
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M(t)

𝑧
•

𝐴 𝑡 𝑥 ≤ 𝑏 𝑡 ⇔ 𝑥 ∈ 𝑀 𝑡
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𝑀(𝑡)

Troubles with Non-Stationarity

We can't simply solve the system of 

inequalities since while the 

calculations are performed the 

polytope is changing its position in 

the space!
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𝑧
•

𝐴 𝑡 𝑥 ≤ 𝑏 𝑡 ⇔ 𝑥 ∈ 𝑀 𝑡
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Troubles with Non-Stationarity

We can't simply solve the system of 
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calculations are performed the 

polytope is changing its position in 

the space!
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𝑧
•

𝑀 𝑡′

𝐴 𝑡′ 𝑥 ≤ 𝑏 𝑡′ ⇔ 𝑥 ∈ 𝑀 𝑡′

𝐴 𝑡 𝑥 ≤ 𝑏 𝑡 ⇔ 𝑥 ∈ 𝑀 𝑡
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Algorithm for Non-Stationary Linear 

Feasibility Problem 

• Requirements:

– High scalability

– Self-correcting

• Cimmino algorithm for inequalities

– Projective

– Iterative

7
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Vector of Projection onto Hyperplane Hi
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M

𝐻𝑖

𝜌𝐻𝑖(𝑧) =
𝑏𝑖 − 𝑎𝑖 , 𝑧

𝑎𝑖
2

𝑎𝑖

z 𝜌𝐻𝑖(𝑧)

𝐻𝑖: 𝑎𝑖 , 𝑥 = 𝑏𝑖

𝑧 + 𝜌𝐻𝑖(𝑧)

∙ – Euclidean norm

𝑎𝑖 , 𝑧 – dot product
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Positive Slice of Projection Vector

for Hyperplane Hi

9

M

𝐻1 𝐻2

𝜌𝐻𝑖
+ (𝑧) =

min 𝑏𝑖 − 𝑎𝑖 , 𝑧 , 0

𝑎𝑖
2

𝑎𝑖

z 𝜌𝐻1
+ (𝑧)

𝜌𝐻2
+ 𝑧 = 𝟎
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Projective Mapping
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𝜑 𝑥 =
1

ℎ


𝑖=1

𝑚

𝜌𝐻𝑖
+ 𝑥

ℎ ⎯ the number of nonzero terms in the sum σ𝑖=1
𝑚 𝜌𝐻𝑖

+ (𝑥)
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Cimmino Iterative Algorithm 

for Inequalities

1. 𝑥(0): = 𝟎

2. 𝑘:= 0

3. 𝑥(𝑘+1): = 𝑥(𝑘) + 𝜑(𝑘) 𝑥(𝑘)

4. if 𝑥(𝑘+1) − 𝑥(𝑘)
2
< 𝜀2 goto 7

5. 𝑘:= 𝑘 + 1

6. goto 3

7. stop
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M
𝑥(1) 𝑥(2) 𝑥(3)𝑥(4)𝑥(5)𝑥

(6)
𝑥(0)
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How Algorithm works

12
𝑥(0)

𝑥1 ≥ 6
𝑥2 ≥ 6
𝑥1 ≤ 14
𝑥2 ≤ 14

𝐻1

𝐻2

𝐻3

𝐻4

𝑥(1)

𝑥(2)
𝑥(3)
𝜀
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Cimmino Algorithm is not suitable for 

Non-stationary Case
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𝑧

𝜀

M(0)
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𝑧

𝜀

M(0)

ǁ𝑧(0)

Cimmino Algorithm is not suitable for 

Non-stationary Case
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M(1)

Cimmino Algorithm is not suitable for 

Non-stationary Case
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𝑧

𝜀

ǁ𝑧(0)
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M(1)

Cimmino Algorithm is not suitable for 

Non-stationary Case
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𝑧

𝜀

ǁ𝑧(0)

ǁ𝑧(1)



/32

M(2)

𝜀

Cimmino Algorithm is not suitable for 

Non-stationary Case
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𝑧

ǁ𝑧(0)

ǁ𝑧(1)
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ǁ𝑧(1)

Cimmino Algorithm is not suitable for 

Non-stationary Case
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𝑧

ǁ𝑧(0)

M(2)

𝜀

ǁ𝑧(2)
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ǁ𝑧(1)

Cimmino Algorithm is not suitable for 

Non-stationary Case
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𝑧

ǁ𝑧(0)

M(3)

𝜀

ǁ𝑧(2)

Achilles will never overtake the tortoise!
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Modification of Projective Mapping

20

M

𝜑 𝑥 =
1

ℎ


𝑖=1

𝑚

𝜌𝐻𝑖
+ 𝑥

𝑥(1)𝑥(0)𝑥(1) = 𝑥(0) + 𝜓 𝑥(0)

𝜓 𝑥 = 𝜆
𝜑 𝑥

𝜑 𝑥

𝜆 > 0

𝜆
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Modified Algorithm
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1. 𝑥(0): = 𝟎

2. 𝑘:= 0

3. 𝑥(𝑘+1): = 𝑥(𝑘) + 𝜓(𝑘) 𝑥(𝑘)

4. if 𝑥(𝑘+1) ∈ 𝑀(𝑘) goto 7

5. 𝑘:= 𝑘 + 1

6. goto 3

7. stop
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Operating of Modified Algorithm
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M(0)z
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Operating of Modified Algorithm
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z

M(1)
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Operating of Modified Algorithm
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z

M(2)
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Operating of Modified Algorithm
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z

M(3)
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Operating of Modified Algorithm

26

z

M(4)
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Operating of Modified Algorithm
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z

M(5) Achilles overtook the tortoise!
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Synthetic Problem
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𝑥0 ≤ 200
𝑥1 ≤ 200

⋱ ⋯ ⋯
𝑥𝑛−1 ≤ 200

𝑥0 + 𝑥1 ⋯ + 𝑥𝑛−1 ≤ 200(𝑛 − 1) + 100
𝑥0 + 𝑥1 ⋯ + 𝑥𝑛−1 ≤ −100
−𝑥0 ≤ 0

−𝑥1 ≤ 0
⋱ ⋯ ⋯

−𝑥𝑛−1 ≤ 0

Number of variables: 𝑛

Number of inequalities: 𝑚 = 2𝑛 + 2
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Synthetic Problem with n=2

100 200

100

200

0

x2

x1
300

300
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𝑥1 ≤ 200
𝑥2 ≤ 200
𝑥1 + 𝑥2 ≤ 300
𝑥1 + 𝑥2 ≥ 100
𝑥1 ≥ 0
𝑥2 ≥ 0

𝑥(0) = −200,−200
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Supercomputer "Tornado SUSU"

30

Number of nodes: 384

CPU: 2 х Intel Xeon X5680

RAM per node: 24 GB

Coprocessor: Intel Xeon Phi SE10X: 

Coprocessor memory: 8 GB

Computational network: InfiniBand QDR

Control network: Gigabit Ethernet

Operating system: Linux CentOS 6.2
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Computational Experiments
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Number of variables: 32 000

Number of inequalities: 64 002

P – number of processor nodes

𝜆 = 140

Number of variables: 54 000

Number of inequalities: 108 002 
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Thanks for your attention!
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