

SUSU

Scalable algorithm for Solving Convex Feasibility Problems

Leonid Sokolinsky

South Ural State University (national research university)

Convex Feasibility Problem

- The problem of finding a point in the intersection of a finite family of closed convex sets in the Euclidean space
- Applications
- Image reconstruction
- Quantum information science
- Asset-liability management
- Scheduling
- Algorithmic trading

Non-Stationary Linear Feasibility Problem

- $x \in \mathbb{R}_{n}$
- $A^{(t)}-$ matrix $m \times n$
- $b^{(t)}-$ vector of dimension n
- $t \in \mathbb{R}_{\geq 0}$ - time

Geometric Interpretation of Linear Feasibility Problem

$A^{(t)} x \leq b^{(t)} \Leftrightarrow x \in M^{(t)}$

Troubles with Non-Stationarity

We can't simply solve the system of inequalities since while the calculations are performed the polytope is changing its position in the space!

Troubles with Non-Stationarity

We can't simply solve the system of inequalities since while the calculations are performed the polytope is changing its position in the space!

[^0]$A^{(t)} x \leq b^{(t)} \Leftrightarrow x \in M^{(t)}$

Algorithm for Non-Stationary Linear Feasibility Problem

- Requirements:
- High scalability
- Self-correcting
- Cimmino algorithm for inequalities
- Projective
- Iterative

Vector of Projection onto Hyperplane H_{i}

$$
H_{i}:\left\langle a_{i}, x\right\rangle=b_{i}
$$

$$
\rho_{H_{i}}(z)=\frac{b_{i}-\left\langle a_{i}, z\right\rangle}{\left\|a_{i}\right\|^{2}} a_{i}
$$

||•\| - Euclidean norm
$\left\langle a_{i}, z\right\rangle-\operatorname{dot}$ product

Positive Slice of Projection Vector for Hyperplane H_{i}

$$
\rho_{H_{i}}^{+}(z)=\frac{\min \left\{b_{i}-\left\langle a_{i}, z\right\rangle, 0\right\}}{\left\|a_{i}\right\|^{2}} a_{i}
$$

$$
z \quad \rho_{H_{1}}^{+}(z)
$$

$$
\rho_{H_{2}}^{+}(z)=\mathbf{0}
$$

Projective Mapping

$$
\varphi(x)=\frac{1}{h} \sum_{i=1}^{m} \rho_{H_{i}}^{+}(x)
$$

h - the number of nonzero terms in the sum $\sum_{i=1}^{m} \rho_{H_{i}}^{+}(x)$

Cimmino Iterative Algorithm for Inequalities

1. $x^{(0)}:=\mathbf{0}$
2. $k:=0$
3. $x^{(k+1)}:=x^{(k)}+\varphi^{(k)}\left(x^{(k)}\right)$
4. if $\left\|x^{(k+1)}-x^{(k)}\right\|^{2}<\varepsilon^{2}$ goto 7
5. $k:=k+1$
6. goto 3
7. stop

How Algorithm works

Cimmino Algorithm is not suitable for Non-stationary Case

Cimmino Algorithm is not suitable for Non-stationary Case

Cimmino Algorithm is not suitable for Non-stationary Case

Cimmino Algorithm is not suitable for Non-stationary Case

Cimmino Algorithm is not suitable for Non-stationary Case

Cimmino Algorithm is not suitable for Non-stationary Case

Cimmino Algorithm is not suitable for Non-stationary Case

Modification of Projective Mapping

$$
\begin{aligned}
& \varphi(x)=\frac{1}{h} \sum_{i=1}^{m} \rho_{H_{i}}^{+}(x) \quad \square \quad \psi(x)=\lambda \frac{\varphi(x)}{\|\varphi(x)\|} \\
& \lambda>0
\end{aligned}
$$

$$
x^{(1)}=x^{(0)}+\psi\left(x^{(0)}\right)
$$

Modified Algorithm

1. $x^{(0)}:=0$
2. $k:=0$
3. $x^{(k+1)}:=x^{(k)}+\psi^{(k)}\left(x^{(k)}\right)$
4. if $x^{(k+1)} \in M^{(k)}$ goto 7
5. $k:=k+1$
6. goto 3
7. stop

Operating of Modified Algorithm

Synthetic Problem

$$
\left\{\begin{array}{ccccl}
x_{0} & & & & \leq \\
& x_{1} & & & \leq \\
& & \ddots & & \cdots \\
& & & x_{n-1} & \leq \\
& \leq & \\
x_{0} & +x_{1} & \cdots & +x_{n-1} & \leq \\
x_{0} & +x_{1} & \cdots & +x_{n-1} & \leq \\
-x_{0} & & & & \leq 100 \\
& -x_{1} & & & \leq \\
& & \ddots & & \cdots \\
& & & -x_{n-1} & \leq \\
& & & &
\end{array}\right.
$$

Number of variables: n
Number of inequalities: $m=2 n+2$

Synthetic Problem with $\mathrm{n}=2$

Supercomputer "Tornado SUSU"

Number of nodes:	2 x Intel Xeon X5680
CPU:	24 GB
RAM per node:	
Coprocessor:	Intel Xeon Phi SE10X:
Coprocessor memory:	
Computational network:	InfiniBand QDR
Control network:	Gigabit Ethernet
Operating system:	Linux CentOS 6.2

Computational Experiments

P - number of processor nodes
 $$
\lambda=140
$$

Number of variables: 32000
Number of inequalities: 64002

Number of variables: 54000 Number of inequalities: 108002

Thanks for your attention!

[^0]: ${ }_{z}{ }^{-}$

 $$
 A^{\left(t^{\prime}\right)} x \leq b^{\left(t^{\prime}\right)} \Leftrightarrow x \in M^{\left(t^{\prime}\right)}
 $$

