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Abstract. This paper is devoted to the new edition of the parallel
Pursuit algorithm proposed the authors in previous works. The Pur-
suit algorithm uses Fejer’s mappings for building pseudo-projection on
polyhedron. The algorithm tracks changes in input data and corrects the
calculation process. The previous edition of the algorithm assumed using
a cube-shaped pursuit region with the number of K cells in one dimen-
sion. The total number of cells is Kn, where n is the problem dimen-
sion. This resulted in high computational complexity of the algorithm.
The new edition uses a cross-shaped pursuit region with one cross-bar
per dimension. Such a region consists of only n(K − 1) + 1 cells. The
new algorithm is intended for cluster computing system with Xeon Phi
processors.
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1 Introduction

In the papers [7,8], the authors proposed the new Pursuit algorithm for solving
high-dimension, non-stationary, linear programming problem. This algorithm is
focused on cluster computing systems. High-dimensional, non-stationary, linear
programming problems with quickly-changing input data are often seen in mod-
ern economic-mathematical simulations. The non-stationary problem is charac-
terized by the fact that the input data is changing during the process of its
solving. One example of such problem is the problem of investment portfolio
management by using algorithmic trading methods (see [1,2]). In such prob-
lems, the number of variables and inequalities in the constraint system can be in
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the tens and even hundreds of thousands, and the period of input data change
is within the range of hundredths of a second. The first version of the algorithm
designed by the authors used a cubic-shaped pursuit region with the quantity
of K cells in one dimension. In this case, the total number of cells is equal to
Kn, where n is the dimension of the problem. This results in the high compu-
tational complexity of the algorithm. In this paper, we describe a new edition
of the Pursuit algorithm, which uses a cross-shaped pursuit region with one
cross-bar per dimension and containing only n(K − 1) + 1 cells. The main part
of the Pursuit algorithm is a subroutine of calculating the pseudoprojection on
the polyhedron. Pseudoprojection uses Fejer’s mappings to substitute the pro-
jection operation on a convex set [4]. The authors implemented this algorithm in
C++ language parallel programming technology OpenMP 4.0 [6] and the vector
instruction set of Intel C++ Compiler for Xeon Phi [9]. The efficiency of the
algorithm implementation for coprocessor Xeon Phi with KNC architecture [10]
was investigated using a scalable synthetic linear programming problem. The
results of these experiments are presented in this paper. The rest of this paper
is organized as follows. In Sect. 2, we give a formal statement of a linear pro-
gramming problem and define Fejer’s process and the projection operation on a
polyhedron. Section 3 describes the new version of the algorithm with a cross-
shaped pursuit region. Section 4 provides a description of the main subroutine
and subroutine for calculating the pseudoprojection of the revised algorithm by
using UML activity diagrams. Section 5 is devoted to investigation of the effi-
ciency of Intel Xeon Phi coprocessor usage for computing pseudoprojection. In
conclusion, we summarize the results obtained and propose the directions for
future research.

2 Problem Statement

Given a linear programming problem

max {〈c, x〉 |Ax ≤ b, x ≥ 0} . (1)

Let us define the Fejer’s mapping ϕ : Rn → R
n as follows:

ϕ (x) = x −
m∑

i=1

αiλi
max {〈ai, x〉 − bi, 0}

‖ai‖2
ai. (2)

Let M be a polyhedron defined by the constraints of the linear programming
problem (1). This polyhedron is always convex. It’s known [3] that ϕ will be
a single-valued continuous M -fejerian mapping for any αi > 0 (i = 1, . . . ,m),
m∑

i=1

αi = 1, and 0 < λi < 2. Putting in formula (2) λi = λ and αi = 1/m (i =

1, . . . ,m), we get the formula

ϕ (x) = x − λ

m

m∑

i=1

max {〈ai, x〉 − bi, 0}
‖ai‖2

ai, (3)
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a) double index numbering (χ, η) b) linear numbering

Fig. 1. Cross-shaped pursuit region (n = 2, K = 7).

which is used in the Pursuit algorithm.
Let us set

ϕs(x) = ϕ . . . ϕ︸ ︷︷ ︸
s

(x). (4)

Let the Fejerian process generated by mapping ϕ from an arbitrary initial
approximation x0 ∈ R

n to be a sequence {ϕs(x0)}+∞
s=0. It is known that this

Fejerian process converges to a point belonging to the set M:

{ϕs(x0)}+∞
s=0 → x̄ ∈ M. (5)

Let us denote this concisely as follows: lim
s→∞ ϕs(x0) = x̄.

Let ϕ-projection (pseudoprojection) of point x ∈ R
n on polyhedron M be

understood as the mapping πϕ
M (x) = lim

s→∞ ϕs(x).

3 Description of the Revised Algorithm

Without losing of generality, we may suppose all the processes are carried out
in the region of positive coordinates.

Let n be the dimension of solution space. The new edition of the algorithm
uses a cross-shaped pursuit region. This region consists of n(K−1)+1 hypercubi-
cal cells of equal size. The edges of all cells are codirectional with the coordinate
axis. One of these cells designates the center. We will call this cell central. The
remaining cells form an axisymmetrical cross-shaped figure around the central
cell. An example of a cross-shaped pursuit region in a two-dimensional space is
presented in Fig. 1. The total number of cells in the cross-shaped pursuit region
can be calculated by the following formula:

P = n(K − 1) + 1. (6)
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Each cell in the cross-shaped pursuit region is uniquely identified by a label
being a pair of integer numbers (χ, η) such that 0 ≤ χ < n, |η| ≤ (K − 1)/2.
From an informal point of view, χ specifies the cell column codirectional to the
coordinate axis indexed by χ, and η specifies the cell sequence number in the
column in relation to the center cell. The corresponding double index numbering
is shown in Fig. 1(a).

We will call the vertex closest to the origin a zero vertex. Let (g0, . . . , gn−1)
be the Cartesian coordinates of the central cell zero vertex. Let us denote by s
the cell edge length. Then the Cartesian coordinates (y0, . . . , yn−1) of the zero
vertex of the cell (χ, η) are defined by the following formula:

yj =
{

gχ + ηs, if j = χ
gj , if j 	= χ

(7)

for all j = 0, . . . , n − 1.
Informally, the algorithm with cross-shaped pursuit region can be described

by the following sequence of steps.

1. Initially, we choose a cross-shaped pursuit region which has K cells in one
dimension, with the cell edge length equal to s, in such a way, that the central
cell has nonempty intersection with the polyhedron M .

2. The point z = g is chosen as an initial approximation.
3. Given dynamically changing input data (A, b, c), for all cells of cross-shaped

pursuit region, the pseudoprojection from the point z on the intersection of
the cell and polyhedron M is calculated. If intersection is empty, then the
corresponding cells are discarded.

4. If the obtained set of pseudoprojections is empty then we increase the cell
size w times and go to the step 3.

5. If we receive a nonempty set of pseudoprojections then, for each cross bar,
we choose the cell for which the cost function takes the maximal value at the
point of pseudoprojection if it exist. For the set of cells obtained in such a way,
we calculate the centroid and move point z at the position of the centroid.

6. If the distance between centroid and central cell is less than 1
4s then we

decrease the cell length s 2 times.
7. If the distance between centroid and central cell is greater than 3

4s then we
increase the cell length s 1.5 times.

8. We translate the cross-shaped pursuit region in such a way that its central
point be situated at the centroid point found at the step 5.

9. Go to the step 3.

In the step 3, the pseudoprojections for the different cells can be calculated
in parallel without data exchange between MPI-processes. This involves P MPI-
processes, where P is determined by the formula (6). We use the linear cell
numbering for the distributing the cells on the MPI-processes. Each cell of the
cross-shaped pursuit region is assigned an unique number α ∈ {0, . . . , P − 1}.
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The sequential number α can be uniquely converted to the label (χ, η) by
the following formulas1:

χ = (α − 1) ÷ (K − 1) (8)

η =

⎧
⎨

⎩

0, if α = 0
(α − 1) mod K−1

2 − K−1
2 , if 0 ≤ (α − 1) mod (K − 1) < K−1

2

(α − 1) mod K−1
2 + 1, if (α − 1) mod (K − 1) ≥ K−1

2

(9)

The reverse conversion of (χ, η) in α can be performed by the formula

α =

⎧
⎨

⎩

0, if η = 0
η + K−1

2 + χ(K − 1) + 1, if η < 0
η + K−1

2 + χ(K − 1), if η > 0
(10)

Figure 1(b) shows the linear numbering corresponding to the double index num-
bering shown in Fig. 1(a).

4 Implementation of Revised Algorithm

This section describes the changes in the implementation of the new version of
the Pursuit algorithm with reference to the description given in the paper [8].

4.1 Diagram of Main Subroutine

The activity diagram of the main subroutine of the Pursuit algorithm is shown in
Fig. 2. In the loop until with label 1, the approximate solution z = (z0, . . . , zn−1)
of the linear programming problem (1) is permanently recalculated according to
the algorithm outline presented in the Sect. 3. As an initial approximation, z
may be chosen as an arbitrary point.

The main subroutine of the Pursuit algorithm is implemented as an inde-
pendent process, which is performed until the variable stop takes the value of
true.

The initial setting of the variable stop to the value false is performed by the
root process corresponding to the main program. The same root process sets the
variable stop to the value true, when the computations must be stopped.

In the body of the loop until, the following steps are performed. In the step 2,
the K parallel threads are created. Each of them independently calculates the
pseudoprojection from the point z on the intersection of the i-th cell and poly-
hedron M (i = 0, . . . , P − 1). Recall that P is equal to the number of MPI-
processes that in turn is equal to the total number of cells in the cross-shaped
pursuit region calculated by the formula (6). The activity diagram of subroutine
π for calculating the pseudoprojection is described in Sect. 4.2.

In the loop for with label 3, for each cross bar χ = 0, . . . , n − 1, we calculate
the sequential number α′

χ of the cell in this cross bar, in which the cost function
C takes the maximum. It is calculated in the loop with label 5. In order to
1 We use symbol ÷ to denote the integer division.
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Fig. 2. Main subroutine of Pursuit algorithm.
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guarantee the correct execution of the cycle 5, we initially assign the value MinInt
to variable α′

χ. This value corresponds to the minimal value of the integer type.
In the step 6, we calculate the sequential number α for the cell with label (χ, η)
by using formula (10).

The subroutine π calculating the point xα = (x0, . . . , xn−1) of pseudoprojec-
tion from the point z on the intersection of polyhedron M with the cell with
number α assigns value −1 to x0 when the pseudoprojection point xα does not
belong to the polyhedron M . This situation occurs when the intersection of the
polyhedron M with the cell with number α is empty. If xα belongs to the poly-
hedron then value of x0 can’t be negative because of our assumption that all the
processes are carried out in the region of positive coordinates (see Sect. 3). This
condition is checked in the step 7. Cases with x0 = −1 are excluded from con-
sideration. If all the cells in the current cross bar of pursuit region have empty
intersection with polyhedron M then the variable α′

χ saves the value MinInt.
This case is fixed in the step 10.

Then, in the loop 9, a new approximate solution z′ of the problem (1) is
calculated. Variable k takes the value which is equal to the number of cross bars
having the nonempty intersections with polyhedron M . For this purpose, in the
step 8, it is assigned the zero value. In the step 10, the cross bars having the
empty intersections with polyhedron M are excluded from consideration. In the
step 11, we calculate the sum of all pseudoprojection points, in which the cost
function takes maximum, and assign this value to z′.

If in the step 12 we have k = 0, it means that the pursuit region has empty
intersection with polyhedron M . In this case, the length s of cell edge is increased
w times, and we go back to the step 1. The constant w is a parameter of the
algorithm. If in the step 12 we have k > 0 then the new approximation z′ is
assigned the value which is equal to the centroid of all the cell selected in the
loop labeled 9.

In the step 13, we investigate how far the new approximation z′ is distant
from the previous approximation z. If the distance between z′ and z is greater
than 3

4s then the length s of cell edge is increased 1.5 times. If the distance
between z′ and z is less than 3

4s then the length s of cell edge is decreased 2
times. If the distance between z′ and z is greater than or equal 1

4s and less than
or equal 3

4s then the length s of cell edge is unchanged. The values 1/4 and 3/4
are the parameters of the algorithm.

In the step 14, the pursuit region is translated by vector (z′ − z), z is
assigned z′, and computation is continued.

4.2 Diagram of Subroutine Calculating Pseudoprojection

In Fig. 3, the activity diagram of the subroutine calculating the pseudoprojection
x = π(z, α) from the point z on the intersection of the polyhedron M and the cell
with number α calculated by the formula (10) is presented. The pseudoprojection
is calculated by organizing a Fejerian process (5) (see Sect. 2). In the step 1, the
initialization of the variables used in iterative process is performed. The initial
value of x is assigned to point z; the zero vertex y of the cell with number α is
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Fig. 3. Subroutine π calculating pseudoprojection.
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Fig. 4. Subroutine of zero vertex calcu-
lation for cell with number α.

Fig. 5. Model-n synthetic problem.

calculated by using subroutine zero (see Fig. 4); the variable part of extended
column b′ of the constraint system is obtained by intersecting the polyhedron
M and the cell with number α is defined (see [8]). In the loop 2, we calculate
normsq being a vector of squares of norms of rows of the extended matrix A′:
normsqi = ‖a′

i‖2 (see [8]).
In step 1, we organize an iterative process which calculates a pseudoprojection

based on the formula (3). The subroutine dataChange changes the input data
every t seconds (where t is a positive number, which can take a value less than 1).

The iterative process is terminated when the distance between the last two
approximations x and x′ is less than ε. In the step 1, the subroutine in (see
[8]) checks belonging of the obtained pseudoprojection point x to the cell with
the number α. If x does not belong to the cell with the number α, then x[0] is
assigned the value (−1). The constant ε defines a small positive number, which
allows to correctly handle approximate values.

The activity diagram of the subroutine which calculates the zero vertex of
the cell numbered α is presented in Fig. 4. Calculations are performed by using
the formulas (8), (9) and (10).

5 Computing Pseudoprojection on Intel Xeon Phi

The most CPU intensive operation of the Pursuit algorithm is the operation com-
puting the projections, which is implemented in the subroutine described in the
Sect. 4.2. In order to achieve a high performance we investigated the possibility
of effective use of coprocessors Intel Xeon Phi to calculate the pseudoprojection.

In our experiments, we exploited a self-made synthetic linear programming
problem Model-n presented in the Fig. 5. Such the problems allow us to easily
calculate the precise solution analytically. Therefore, they are well suited for
algorithm validation and scalability evaluation.
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We implemented the algorithm in C++ language using OpenMP. The task
run was performed on Xeon Phi in native mode [10]. For computational experi-
ments, we used the computer system “Tornado-SUSU” [5] with a cluster archi-
tecture. It includes 384 processor units connected by the InfiniBand QDR and
Gigabit Ethernet. One processor unit includes two six-core CPU Intel Xeon
X5680, 24 GB RAM and coprocessor Intel Xeon Phi SE10X (61 cores, 1.1 GHz)
connected by PCI Express bus.

In the first series of experiments, we investigated the efficiency of paralleliza-
tion of calculating pseudoprojection for different numbers of threads. The results
are presented in Fig. 6. The pseudoprojections were calculated on the intersec-
tion of the polyhedron defined by constrains of linear programming problem
Model-n and the cell with edge length s = 20 having coordinates of zero ver-
tex equaling to (100, . . . , 100). The calculations were conducted for the dimen-
sions n = 1200, 9600, 12000. The graphs show that the parallelization efficiency
is strongly depends on the dimension of the problem. So, for the dimension
n = 1200, the speedup curve actually stops growing after 15 threads. This
means that a problem of such dimension cannot fully load all cores of Xeon
Phi. The situation is changed when n = 9600 and more. Speedup becomes near-
linear up to 60 threads, which is equal to the number of cores in Xeon Phi.
Then parallelization efficiency is decreased, and for the dimension n = 9600, we
even observe a performance degradation. The degradation is most evident at the
point corresponding to the use of 180 threads. This dip is due to the fact that is
not divisible by the dimension of 9600 divisible by 180, hence the compiler can-
not uniformly distribute the iterations of the parallel for cycle between threads.
The same situation takes place at the point “45 threads” for the dimensions
1200 and 9600. However, if the dimension is increased up to 12000, this effect is
weakened.

In the second series of experiments, we compared the performance of two
CPUs Intel Xeon and coprocessor Intel Xeon Phi. The results are presented in
Fig. 7. The calculations were made for the dimensions n = 9600, 12000, 19200.
For the Intel Xeon Phi, we made two builds: without the vectorization (MIC)
and with the vectorization including data alignment (MIC+VECTOR). In all
the cases, for the 2×CPU runs we used 12 threads, and for Xeon Phi runs we
used 240 threads. The experiments show that for the dimension n = 9600 the
2×CPU outperform the coprocessor Xeon Phi, for the dimension n = 12000
the 2×CPU demonstrate the same performance as the coprocessor Xeon Phi
does, and for the dimension n = 19200 the coprocessor Xeon Phi noticeably
outperforms 2×CPU. At the same time, for the dimensions 9600, 12000 and
19200, the vectorization and data alignment provides a performance boost of
12%, 12.3% 20% correspondingly. Thus, we can conclude that the efficiency of
the Xeon Phi coprocessor usage increases with the growth of the problem dimen-
sion. Simultaneously the significance of the vectorization and data alignment is
increased.
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Fig. 6. Speedup of computing pseudo-
projection on Xeon Phi.

Fig. 7. Performance comparison of CPU
and Xeon Phi (MIC).

6 Conclusion

The paper describes a new version of the Pursuit algorithm for solving high-
dimension, non-stationary linear programming problem on the modern cluster
computing systems. The distinctive feature of the new version is that it uses a
cross-shaped pursuit region consisting of n(K −1)+1 cells, where n – dimension
of the problem, K – number of cells in one cross-bar. The previous version
of the algorithm uses a cube-shaped pursuit region consisting of Kn cells that
results in high computational complexity of the algorithm. The results of the
computational experiments investigating the efficiency of the coprocessor Xeon
Phi use for pseudoprojection computation were presented. In these experiments,
a synthetic linear programming problem was used. Studies have shown that the
use of Intel Xeon Phi coprocessors is effective for high-dimension problems (over
10000). Our future goal is to investigate the efficiency of the proposed algorithm
on the cluster computing systems using MPI technology.
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