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Abstract—The problem of strong separation of two convex dis-
joint polytopes is considered. This problem is important for many 
industrial applications using machine learning, image analysis and 
pattern recognition. An iterative algorithm based on the Fejerian 
mappings is proposed. This algorithm is based on the Eremin’s 
method. An important property of this method is the robustness of 
the computational process in presence dynamic data changes. The 
two types of Fejerian mappings are investigated: single-valued 
Fejerian mapping and multi-valued Fejerian mapping. To study 
the behavior of the proposed algorithm, the computational exper-
iments with scalable Model-n problems and Random problems 
were performed. The conducted experiments confirmed the effec-
tiveness of the proposed approach. 

Keywords— problem of strong separating, Fejerian mappings, 
iterative process, pattern recognition 

Industry 4.0 is the current trend of automation and data ex-
change in manufacturing technologies. It includes cyber-physi-
cal systems, the Internet of things, cloud computing and cogni-
tive computing. Cognitive computing describes technology plat-
forms that are based on the scientific disciplines of artificial in-
telligence and signal processing. These platforms encompass 
machine learning, reasoning, natural language processing, 
speech recognition and vision (object recognition), human–com-
puter interaction. The crucial areas of the Industry 4.0 are artifi-
cial intelligence, machine learning [1] and the large-scale linear 
programming [2] problems, such as industrial optimization [3]. 
One of the most important problems in machine learning is the 
classification. Classification is the problem of identifying to 
which of a set of categories (sub-populations) a new observation 
belongs, on the basis of a training set of data containing obser-
vations (or instances) whose category membership is known. 
One of the promising classification methods is the strong sepa-
ration method. Another important application area of the strong 
separation method is the pattern recognition including the fol-
lowing problems: detecting oil/gas reservoirs in sand/shale sed-
iments [4], signal processing [5], 3D face recognition [6], clas-
sifying visual motion patterns [7], handwritten Japanese charac-
ter recognition [8], recognition of 1-D barcodes [9] and others. 
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The problem of strong separation can be solved by an itera-
tive process using the projecting operation. However, in prac-
tice, the application of this method is limited to the fact that it is 
not always possible to construct the correct equation for calcu-
lating the projection of a point onto a convex set [10]. Therefore, 
it is expedient to replace the projecting operation by a sequence 
of Fejerian mappings [11]. This method was proposed by Ere-
min in [12].  

Fejer's methods are a class of iterative projection-type meth-
ods used to solve systems of linear inequalities and linear pro-
gramming problems. These methods allow efficient paralleliza-
tion and therefore can be used for solving large-scale systems of 
linear inequalities on multiprocessor systems with distributed 
memory [13]. The construction of the corresponding Fejer oper-
ators is based on a superposition of elementary projections, 
namely, projections onto half-spaces. The projection onto a half-
space given by a linear inequality is the basis of the procedure 
for generating a sequence kx that solves the problem in the 

limit: whether it is simply a system of linear inequalities or a 
linear programming problem. This class of methods is interest-
ing from different points of view, in particular, from the point of 
view of their use for non-stationary (evolutionary) model-
ing [14]. Examples of such non-stationary problems are, for ex-
ample, the problem of a securities portfolio [15] and modeling 
for asset-liability management [16], the problem of spam filter-
ing [17], [18] and the problem of classification in meteorology 
[19]. To overcome the problem of non-stationarity of input data, 
the Pursuit algorithm for solving non-stationary linear program-
ming problems on cluster computing systems was proposed 
in [20]. The Pursuit algorithm uses Fejer maps to build a pseudo-
projection onto the convex bounded set. The pseudo-projection 
operator is like the projection, but, in contrast to the last, the 
pseudo-projection is stable for dynamic change of input data. In 
the paper [21], the author investigated the efficiency of using 
multi-core processors Intel Xeon Phi to calculate the pseudo-
projections. 

Fejer introduced the notion of convergence of the sequence 

kx , 0,1,2,k  with respect to the set nM R : 

1k kx y x y     where k  and y M . 



In this paper, an iterative algorithm F is constructed and in-

vestigated to solve the problem of strong separation. This algo-
rithm is based on the Eremin’s method. The paper describes the 
theoretical and practical aspects of the algorithm F. The rest of 

the paper is organized as follows. Section I gives a formal state-
ment of a problem of strong separation and presents the defini-
tions of Fejer process and the pseudo-projection onto a polyhe-
dron. Section II describes a method for solving the problem of 
strong separation using an iterative algorithm based on Fejer 
mappings. Section III is dedicated to the tasks used to test the 
effectiveness of the proposed approaches and the results of com-
putational experiments are discussed. In conclusion, the ob-
tained results are summarized and directions for further research 
are outlined. 

I. PROBLEM STATEMENT 

Let us formulate the problem of strong separation. Let us 
consider two convex disjoint polytopes nM R  and nN  R
given by systems of linear inequalities: 
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The problem of strong separation is the problem of finding 
a layer of the greatest thickness separating M and N. Strong sep-
aration is the problem of finding the distance between M and N, 
which is equivalent to 

    , min | ,M N x y x M y N     . (2) 

where x y  is the Euclidean distance on n . 

 
Let us draw tangent hyperplanes in terms of x M  and 

y N  for which condition (2) is satisfied, so that these hyper-
planes are parallel. Then a perpendicular dropped from one hy-
perplane to another will determine the layer of greatest thickness 
that separates the polytopes M and N.  

The problem of strong separation can be solved using an it-
erative algorithm based on Fejerian mappings. Let us give a def-
inition of the Fejerian mapping.  

Let we be given  n n R R . The map   is said to be 

M-Fejerian if  y y  , y M  ;  x y x y    , 

y M  , x M  . 

A sequence   n
kx  R  is said to be M-Fejerian if 

1k kx y x y    , k , y M  . 

A multi-valued (point-set) mapping  2
nn  RR is said 

to be M-Fejerian if  y y  , y M  ; z y x y   , 

y M  , x M  ,  z x  . 

By definition, put 
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Let us consider two types of Fejerian mappings given 
in [10]: single-valued and multi-valued Fejerian mappings. 

Type 1 (single-valued Fejerian mapping). Let we be given 
a finite system of linear inequality in the vector space n : 

    : , 0, 1, , ,j j jAx b l x a x b j m        (3) 

where 0ja   for every j ,  ,ja x  is the Euclidean dot product 

of ja  and x  in n , n
jb  . Let us define  jl x  as follows: 

     max ,0 , 1, , .j jl x l x j m     (4) 

Then a Fejerian mapping of the first type can be defined as the 
follows: 

    
2

1

m
j

j j j
j

j

l x
x x a

a
  





   (5) 

for any system of positive coefficients  0j  , 1, ,j m   

such that 
1

1
m

j
j




 , and relaxation factor 0 2j  . Here   

is the Euclidean norm. 
Type 2 (multi-valued Fejerian mapping). Let us construct 

the Fejer mapping of the second type as follows: 
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here xj  is any of the indices where 
 

 max j
j

l x  is reached, 

0 2   is the relaxation factor. 
Let M be a convex closed set given by a system of linear 

inequalities. Let   be a continuous M-Fejerian mapping. Let us 

denote  ix  - the sequence generated by the mapping  . Let 

0
nx R  be an arbitrary initial approximation. The following 

fundamental theorem of convergence holds [10]. 

Theorem 1. The process   1i ix x  , i  generated by 

any Fejerian mapping   for any initial 0x , converges to a solu-

tion x  of the system of convex inequalities: 

  1i ii x x x M     . 

Let us consider how Fejerian mappings can be used to solve 
the problem of strong separation of two convex disjoint poly-
topes. 

II. THE METHOD OF SOLVING THE PROBLEM OF STRONG 

SEPARATION 

Let us define the algorithm F for the separation of convex 

polytopes by using Fejerian mappings. 



 

Fig. 1. The iterations of the algorithm F. 

Algorithm F. Let we be given two convex disjoint poly-

topes nM R  and nN  R  given by systems of linear inequal-
ities (1). Let M  and N  be continuous M and N-Fejerian map-

pings. Method starts with an arbitrary point 0z  in n  as an ini-
tial approximation. The algorithm consists of the following 
steps: 

Step 0. : 0k  . 
Step 1. Find the point kx  as the result of the repeated suc-

cessive application of the mapping M  to the point kz : 

 : lim u
k M ku

x z


 . 

Step 2. Find the point ky  as the result of the repeated suc-

cessive application of the mapping N  to the point kz : 

 : lim u
k N ku

y z


 . 

Step 3. Designate: 

1 :
2

k k
k

x y
z 


 . 

Step 4. : 1k k  . 
Step 5. Go to Step 1. 
The iterations of algorithm F are shown schematically in 

Fig. 1. 
The use of the algorithm F to find the layer of the greatest 

thickness that separates two convex polytopes M and N consists 
of the sequential computation of the points kx M  and .ky N  
This iterative process ends when: 

  1 1max ,k k k kx x y y     , 

where 0   is a positive real number being a parameter of the 
algorithm. 

It is known that if the points kx  and ky  are obtained as pro-

jections of the points 1kx   and 1ky   onto the polytopes M and N 
respectively then for the case of convex polytopes the process 
converges to the stability loop. In this case, in the limit, we ob-
tain a distance defining the layer of greatest thickness. Eremin 
suggested that the algorithm F using Fejér's approximations 
would also converge to the stability loop. 

In order to verify the analytical results, we implemented the 
algorithm F for the separation of convex polytopes by using 
  

 
Fig. 2. Iterations of the algorithm F for the problem Model-3. 

Fejerian mappings in C++ language. Using this program, an ex-
perimental study of the behavior of the algorithm F for various 

convex polytopes was made. The convergence of the process to 
the stability loop was observed in all cases. As a result, we ob-
tained a distance defining the layer of the greatest thickness with 
a specified accuracy. The results of computational experiments 
are described in detail in the next section. 

III. NUMERICAL EXPERIMENTS 

During the computational experiments the behavior of the 
algorithm F for Fejerian mappings of the first and second types 

was investigated. Two classes of tasks were used. The first class 
is the model scalable problem Model-n. For all such problems, 
it is easy to calculate the exact value of the thickness of the max-
imal separating layer analytically. Therefore, they are suitable 
for checking the correctness of the algorithm and investigating 
its scalability. 

The second class is the Random problems which are ran-
domly generated by a special algorithm. This class of problems 
allows us to confirm the applicability of the algorithm F for ar-

bitrary problems of strong separation.  
Let us consider an experiment with a model problem. The 

Model-n problem has the following form (n is the dimension of 
the problem): 
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Fig.3. Dependence of the number of iterations on the dimen-

sion n for the Model-n problem. 

 
Fig.4. Dependence of the time for solving the Model-n prob-

lem on the dimension n. 

The polytopes M and N given by the Model-3 ( 3n  ) prob-
lem and the iterations of the algorithm F leading to the stability 

loop are shown in Fig. 2. For all Model-n problems the thickness 
of the maximum separating layer is 10000. 

A series of computational experiments with Model-n prob-
lems was performed. The dependence of the number of iterations 
and the time of solving the problem on the dimension n was in-
vestigated. The calculations were performed for the dimensions 
from 10 to 140. 

Fejerian mappings of the 1st and 2nd types were used. The 
results of the experiments show (see Fig. 3 and Fig. 4) that the 
number of iterations for both types of Fejerian mappings rises 
with increasing dimension. In this case, the algorithm using a 
Fejerian mapping of the 1st type finds the stability loop for a 
smaller number of iterations. However, an algorithm using the 
2nd type wins significantly by the time of solving the problem 
for all dimensions.  

In the second part of the computational experiment, studies 
were carried out on random problems. To generate problems of 
the Random class, a special program was used. This program 
randomly constructs two systems of linear inequalities that de-
fine two convex disjoint polytopes of any dimension. 

 
Fig.5. Dependence of the number of iterations on the dimen-

sion n for the Random problem. 

 
Fig.6. Dependence of the time for solving the Random prob-

lem on the dimension n 

In a series of computational experiments with Random prob-
lems the dependence of the number of iterations and the time of 
solving the problem on the dimension n was investigated. The 
dimension of the problem was ranged from 10 to 140. Fejerian 
mappings of the 1st and 2nd types were used. During the com-
putational experiment a series of 10 random problems was gen-
erated for each dimension. As a result, we used the averaged val-
ues of the number of iterations and the time of solving the prob-
lem in each series. 

The results of the experiments are shown in Fig. 5 and Fig. 6. 
They show that the behavior of the algorithm F on random prob-

lems is similar to the behavior on model problems. However, the 
difference in the rate of convergence of two types of Fejerian 
mappings for random problems is no longer so significant.  

IV. CONCLUSION 

In this paper, the iterative algorithm F for solving the sepa-

ration problem of two convex disjoint polytopes by a layer of 
greatest thickness was considered. This algorithm is based on 
the use of Fejerian mappings as an analog of the design opera-
tion. To study the behavior of the algorithm F the computational 

experiments with scalable Model-n problems and Random prob-
lems were conducted. The conducted experiments confirmed the 
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effectiveness of the proposed approach. Our future goal is a par-
allel implementation of the algorithm F in C++ language using 

MPI library, and computational experiments on a cluster com-
puting system using synthetic and real problems. 
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