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Abstract—One of the important classes of computational problems is problem-oriented workflow applica-
tions executed in distributed computing environment. A problem-oriented workflow application can be rep-
resented by a directed graph whose vertices are tasks and arcs are data f lows. For a problem-oriented work-
flow application, we can get a priori estimates of the task execution time and the amount of data to be trans-
ferred between the tasks. A distributed computing environment designed for the execution of such tasks in a
certain subject domain is called problem-oriented environment. To efficiently use resources of the distributed
computing environment, special scheduling algorithms are applied. Nowadays, a great number of such algo-
rithms have been proposed. Some of them (like the DSC algorithm) take into account specific features of
problem-oriented workflow applications. Others (like Min–Min algorithm) take into account many-core
structure of nodes of the computational network. However, none of them takes into account both factors.
In this paper, a mathematical model of problem-oriented computing environment is constructed, and a new
problem-oriented scheduling (POS) algorithm is proposed. The POS algorithm takes into account both spe-
cifics of the problem-oriented jobs and multi-core structure of the computing system nodes. Results of com-
putational experiments comparing the POS algorithm with other known scheduling algorithms are presented.
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1. INTRODUCTION

Development of distributed computation techno-
logies in the late 1990s made it possible to combine
heterogeneous resources distributed over the world.
It became possible to solve large-scale scientific, engi-
neering, and commercial problems using geographi-
cally distributed resources belonging to different own-
ers. Studies in this field resulted in the emergence of
the concepts of grid computing [1–4] and, later, cloud
computing [5, 6]. To take advantage of potential capa-
bilities of using distributed computing resources, effi-
cient scheduling algorithms to manage the resources
are needed.

The basic task of a distributed computation tech-
nology is to ensure access to globally distributed
resources by means of special tools. The difficulty of
the resource management is associated with the fact
that different computers may be used to launch and
execute the task and to access the data. Global distrib-
uted computer networks are formed from autonomous
resources the configuration of which varies dynami-
cally. Moreover, distributed resources may belong to
different administrative domains, which requires
coordination of various administration policies.
Another important problem is heterogeneity of the
resources. Earlier works on resource management in
distributed computing environments [7–10] focusing

on resource heterogeneity resulted in creation of stan-
dard resource management protocols and mecha-
nisms of description of requirements on resource
specification. However, practice showed that effective
scheduling methods and algorithms for homogeneous
isolated multiprocessor systems are badly adapted to
distributed heterogeneous systems [11]. Resource
management in heterogeneous distributed computing
environments requires new models of computation
and resource management. Currently, a promising
direction of research is associated with the use of dis-
tributed computation technologies for solving
resource-intensive scientific problems in various sub-
ject domains, such as medicine, engineering design,
nanotechnologies, climate forecasting, and the like.
Computational problems in such subject domains, in
many cases, have f low structure and can be described
by means of workflow models [12], in the framework
of which a job is represented as a directed acyclic graph
whose vertices are tasks and arcs are data f lows trans-
mitted from one task to another. Note that the set of
tasks the jobs consist of is finite and predefined. Prob-
lem-oriented specificity of workflows in such complex
applications consists in that, in the majority of cases,
certain characteristics (such as task execution time on
one processor core, scalability limits, and the amount
of generated data) of the tasks can be estimated before
running the job. The use of such information in a par-
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ticular problem-oriented domain can essentially
improve efficiency of the resource management meth-
ods. Two basic classes of algorithms designed for
scheduling applications with workflow structure are
known [13]. These are clustering algorithms and list
algorithms. Examples of the clustering algorithms are,
for instance, the Kim–Brown algorithm [14] and the
DSC algorithm [15]. Algorithms from this class use
information about the problem-oriented specificity of
tasks composing the computational job; however, they
permit execution of a task on a single processor core of
the multiprocessor system. One of the most popular
list algorithms is the Min-min algorithm [16]. The
basic disadvantage of the list algorithms is that they do
not analyze the entire graph of jobs. Then, it follows
that there is a need in the development of the resource
management methods and algorithms for problem-
oriented distributed computing environments that
take into account specificity of subject domains and
scalability of individual tasks in a job and make use the
possibility of execution of one task on several proces-
sor cores.

The paper is organized as follows. Section 2 surveys
known resource scheduling algorithms in problem-
oriented computing environments. In Section 3, a
mathematical model of problem-oriented distributed
computing environment is constructed. Section 4
describes a new problem-oriented scheduling (POS)
algorithm. Results of computational experiments on
comparison of the POS algorithm with other known
algorithms are presented in Section 5.

2. SCHEDULING IN PROBLEM-ORIENTED 
ENVIRONMENTS

In this section, several known scheduling algo-
rithms for job execution in problem-oriented comput-
ing environments are surveyed. A computational job in
such environments is represented as a directed acyclic
graph, an example of which is shown in Fig. 1. The
vertices of the graph are interrelated computational
tasks, and the arcs represent data f lows between the

individual tasks. The set of classes of the tasks from
which jobs are constructed is finite and predefined.
For each task, the time of task execution on one pro-
cessor core is specified. The amount of data transmit-
ted is given by the arc weight.

One of the most well-known scheduling algorithms
for problem-oriented computing environments is the
dominant sequence clustering (DSC) algorithm [17].
The basic idea of the DSC algorithm consists in parti-
tioning the set of graph vertices into nonintersecting
subsets (clusters). An example of partitioning a job
graph into three clusters, which are shown by the
dashed lines, is presented in Fig. 2a. Tasks from one
cluster are executed sequentially on one processor core
in a certain order determined by the algorithm. For the
clustered graph, job execution schedule is con-
structed, which specifies for each task the number of
the processor core on which it is executed and the time
moment to start it. An example of such a schedule is
depicted in Fig. 2b as a Gantt chart. Here, tasks v1 and
v2 are executed on the processor core p0; v7, on p1; and
v3–v6, on p2.

In the clustered graph, communication weights of
arcs connecting vertices of one cluster are set equal to
zero. As a result, we obtain a scheduled graph. An
example of such a graph is shown in Fig. 2c. The DSC
algorithm takes into account the order the tasks in the
clusters are executed by creating additional pseudoarcs
in the scheduled graph. In Fig. 2c, such an additional
pseudoarc is the arc e = (v4, v5). For the scheduled
graph, the DSC algorithm constructs the dominant
sequence, which, in essence, is the critical path with
regard to the pseudoarcs. In Fig. 2c, the dominant
sequence is depicted by the bold arrows.

At the initial moment of the DSC algorithm oper-
ation, each vertex is placed into a separate cluster, and
all arcs of the job graph are marked as “unconsidered.”
After an arc has been considered on whether its weight
can be set equal to zero, the arc is denoted as “consid-
ered,” and the vertex from which the arc originates is
marked as “scheduled.” The scheduled and unsched-

Fig. 1. Directed acyclic graph.
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Fig. 2. (a) Clustered graph and its critical path; (b) Gantt 
chart; (c) scheduled graph and its dominant sequence.
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uled vertices form sets SN and USN, respectively.
A vertex is said to be “free” if all vertices preceding it
are scheduled. On the first step of the DSC algorithm,
out of the arcs belonging to the dominant sequence of
the job graph, the first unconsidered arc is selected.
On the second step, the arc is set to be zero, and its
vertices are combined in one cluster if the parallel time
does not increase. The order the tasks in a cluster are
executed is determined by the greatest value
bot_level(nx, i), which is calculated as the sum of all
communication costs of the arcs and computational
costs of the vertices between the vertex nx and the lower
vertex of the graph in the dominant sequence. The
DSC algorithm terminates when all arcs have been
considered. The basic disadvantage of the DSC algo-
rithm is associated with its limited applicability to
computing systems with many-core processors, since
the DSC algorithm schedules execution of each task
on only one processor core.

Another known scheduling algorithm for problem-
oriented environments is that of linear clustering by Kim
and Brown [14], which is also known as the KB/L algo-
rithm. The KB/L algorithm is designed for the job graph
clustering under the assumption of an unbounded num-
ber of computing nodes. Initially, all arcs of the graph
are marked as “unconsidered.” On the first step, the
KB/L algorithm seeks the critical path of the job
graph, which includes only “unconsidered” arcs, by
means of the weight cost function (1). All vertices of
the critical path found are combined into one cluster,
with the communication costs of the arcs being set
zero. On the second step, the arcs that are incidental to
the vertices of the critical path are marked as “consid-
ered.” These steps are repeated until all arcs are con-
sidered. In [14], Kim uses the cost function

 (1)

to determine length of the critical path of the job
graph. In (1), w1 and w2 are normalizing multipliers,

 is the sum of computational costs of all vertices

of the critical path, and  is the communication cost
of the arcs between a vertex of the critical path all inci-
dental vertices not belonging to the critical path. The
objective function of the KB/L algorithm to be mini-
mized is the graph parallel time. The KB/L algorithm
does not take into account the fact that the computing
nodes are many-core ones.

One more known clustering algorithm is Sarkar’s
algorithm [18], which can be described as follows.
All arcs of the job graph are sorted out in a descending
order of their communication costs. The arcs are set
equal to zero starting from the arc with the greatest
communication cost. An arc communication cost is
set zero only if the parallel time does not increase on
the next step. The Sarkar’s algorithm terminates when
all arcs of the job graph are considered. The objective
function of the algorithm to be minimized is also the
graph parallel time. Note that this algorithm also does
not take into account the fact that the computing
nodes are many-core ones.

A popular list algorithm is Min–Min [16], which
iteratively performs the following operations. On every
step, for each task, the early completion time (ECT)
for all available resources and the minimum estimated
completion time (MCT) are calculated. The task with
the least MCT metrics gets all resources required for
its completion first. The scheduling process termi-
nates when all tasks are scheduled. This algorithm is
usually used for scheduling jobs that consist of many
independent tasks with large modules and intensive
calculations. The basic disadvantage of the Min–Min
algorithm is that it does not analyze the entire job
graph.

3. COMPUTING ENVIRONMENT MODEL
In this section, we construct a mathematical model

of a problem-oriented distributed computing environ-
ment.

A job graph is a labeled weighted directed acyclic
graph G = 〈V, E, init, fin, δ, γ〉, where V is a set of ver-
tices corresponding to the tasks, E is a set of arcs cor-
responding to the data f lows, init : E → V is a function
defining the initial vertex of an arc, and fin : E → V is a
function defining the final vertex of the arc. Weight
δ(e) of the arc e determines the amount of data to be
transmitted through the arc e from the task associated
with the vertex init(e) to the task associated with the
vertex fin(e). The label
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Fig. 3. Job graph.

v1

v2

v3

v7

v8

v4 v5 v6

(2,2)

(2,6)

(2,8)

(2,4)(2,6) (3,6)

(2,4)

(1,4)

2

4

2

2

1

2

5

1

1

1



20

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 42  No. 1  2016

SOKOLINSKY, SHAMAKINA

determines the maximum number of processor cores
mν on which task ν has speed-up close to linear and
time tν of execution of task ν on one core. This model
assumes that computational cost χ(ν, jν) of task ν on jν
processor cores is determined by the formula

 (3)

In other words, if the number of processor cores varies
in the range from 1 through mν, the decrease in the
computation time is directly proportional to the
increase in the number of cores; further increase of the
number of cores from mν to +∞ does not result in any
speed-up.

Figure 3 shows an example of a job graph contain-
ing eight vertices. Each vertex is marked by a label of
the form (mν, tν). Each arc of the graph has a weight
δ(e), which is the amount of data transmitted through
the arc.

A computing node P is an ordered set of processor
cores {c0, …, cd – 1}.

A computing system is an ordered set of computing
nodes P = {P0, …, Pk – 1}. In practice, it may be a dis-
tributed computing system including several comput-
ing clusters, each of which is a separate node of this
system.

Clustering is a one-to-one mapping ω : V → P of
the set of vertices V of a job graph G onto the set of
computing nodes P.

Let a computing system P = {P0, …, Pk – 1} consist-
ing of k nodes be given. A cluster Wi is a subset of all
vertices mapped onto computing node Pi ∈ P:

 (4)
where

 (5)

 (6)

Let a job graph G = 〈V, E, init, fin, δ, γ〉 be given for
which a clustering function ω(ν) is defined. Then, the
graph is said to be clustered and is denoted as G = 〈V,
E, init, fin, δ, γ, ω〉.

In the framework of the model, we assume that the
transmission time of any amount of data between ver-
tices belonging to one cluster is equal to zero and that
between vertices belonging to different clusters is pro-
portional to the amount of data transmitted with the
coefficient 1. Accordingly, we may define communica-
tion cost (time) σ : E → ℤ≥0 of data transmission
through an arc e ∈ Ε as

 (7)
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Let a clustered graph G = 〈V, E, init, fin, δ, γ, ω〉 be
given. A schedule of G is a mapping ξ : V → ℤ≥0 × ℕ
that, to an arbitrary vertex v ∈ V, assigns a pair

 (8)
where tv determines the time to run task ν and jv is the
number of processor cores allocated for the task ν
associated with this vertex. Let sv denote the termina-
tion time of task ν. We have

 (9)
where χ is the time complexity function defined in (3).
A schedule is said to be correct if it satisfies the condi-
tions

 (10)

 (11)

 (12)

Condition (10) means that, for any two adjacent verti-
ces ν1 = init(e) and ν2 = fin(e), the launch time of ν2
cannot be less than the sum of the following quantities:
launch time of ν1, execution time of ν1, and the com-
munication cost of arc e. Condition (11) means that
the number of cores allocated for task ν1 does not
exceed linear scalability bounds specified by the mark-
ing γ in the context of formula (2). Condition (12)
implies that, at any time t, the number of processor
cores allocated for the tasks on the node with number
i cannot exceed the total number of cores on this node.
In what follows, any schedule is assumed correct
unless otherwise specified.

A clustered graph with a specified schedule is called
scheduled and denoted as G = 〈V, E, init, fin, δ, γ, ω, ξ〉.

A tier-parallel form (TPF) [19] is a partition of the
set of vertices V of a directed acyclic graph G = 〈V, E,
init, fin〉 into numbered subsets (tiers) Li (i = 1, …, r)
satisfying the following conditions:

 (13)

The last condition means that, if there is an arc from a
vertex v1 to a vertex v2, then the vertex v2 belongs to a
tier whose number is greater than that of the tier where
the vertex v1 is located. The number of vertices in a tier
Li is called its width. The number of tiers in an TPF
and the maximum width of its tiers are called height
and width of the TPF. An TPF is said to be canonical
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[19] if all entry vertices (the vertices that have no entry
arcs) belong to the tier with number one and the max-
imum length of paths terminating at a vertex belonging
to the kth tier is equal to k – 1.

Let G = 〈V, E, init, fin, δ, γ, ω, ξ〉 be a scheduled
graph and y = (e1, e2, …, en) be a simple path in it. The
cost of a path y is calculated as

 (14)

where ξ is the computational cost of the vertex given by
formula (3); σ is the communication cost of the arc
given by formula (5); jv and τv are given by (6); and sv
is determined by formula (7).

Let Y be a set of all simple paths in a scheduled
graph G = 〈V, E, init, fin, δ, γ, ω, ξ〉. A simple path

∈ Y is called critical path if

 (15)

i.e., the critical path has the maximum cost.
Proposition. Any critical path in a scheduled graph

G = 〈V, E, init, fin, δ, γ, ω, ξ〉 begins with an entry ver-
tex and ends at an exit one (a vertex having no outgo-
ing arcs).

Proof. We prove the proposition by contradiction.
Suppose that there exists a critical path  = (e1, e2, …,
en) ∈ Y that begins with a vertex that is not an entry
one. Then, there exists an arc eh such that fin(eh) =
init(eh). Since G is an acyclic graph, it follows that  =
(e1, e2, …, en) ∈ Y. By virtue of (2), (3), and (14), we
have  < , which contradicts (15). Similarly, we
arrive at a contradiction assuming that there exists a
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critical path ending at a vertex that is not an exit one.
The proposition is proved.

4. ALGORITHM POS
In this section, we describe the POS (problem-ori-

ented scheduling) algorithm designed for scheduling
resources in distributed problem-oriented computing
environments. A distinctive feature of the POS algo-
rithm is that it takes into account information about
specific subject domain when scheduling resources.
In the framework of the model described in Section 3,
this information is presented in labels of vertex-tasks
specifying execution time of the task on one core and
its scalability and in arc weights specifying amounts of
data to be transmitted. The POS algorithm is designed
for use in distributed computing systems with many-
core processors.

To simplify the description and understanding of
the algorithm, we will use three-level structure of the
algorithm procedures. A first-level procedure is the
main one. A step of the first-level procedure can be
described as a second-level procedure. Such a step is
highlighted by the semibold type. A similar approach
can be used to describe second-level procedures.

4.1. Main Procedure
Consider a computing system in the form of an

ordered set of computing nodes P = {P0, …, Pk – 1}.
Let a job graph G = 〈V, E, init, fin, δ, γ〉 be given. Sup-
pose that the following conditions hold:

 (16)

 (17)
where mv is a linear scalability threshold given by a
labeling function γ. Let us partition graph G into a
canonical TPF with tiers Li (i = 1, …, r) and number
vertices V = (v1, …, vq) of G such that the following
property holds:

 (18)

i.e., vertices with greater numbers are located on lower
tiers.

The most general form of the main procedure is as
follows:

Step 1. Construct an initial configuration G0.
Step 2. i := 0.
Step 3. Construct configuration Gi.
Step 4. If there are unconsidered arcs, i := i + 1 and

go to Step 3.
Step 5. Pack configuration Gi + 1.
Step 6. Stop.
The procedure operation consists in construction

of a sequence of configurations. When turning to a
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Table 1. Parameters of job graphs from the MCO class

Parameter Semantics Value

mν Task scalability 10
tν Task execution time on one core 100
δ Amount of data transmitted 

through the arc
50

Table 2. Parameters of job graphs from the MCO class

Parameter Semantics Value

l Job graph height 10

mν Task scalability 10

tν Task execution time on one core 100

δ Amount of data transmitted 
through the arc

50
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current configuration, at least one arc of the graph is
marked as a considered one. Since the number of arcs
is finite, the procedure stops on some iteration.
The last constructed configuration Gi + 1 is selected to
be the resulting configuration.

4.2. Procedure Constructing an Initial Configuration
Step 1.1. An initial clustering function ω0 is speci-

fied as follows: ∀i ∈ {1, …, q}(ω0(vi) = Pi + 1). That is,
each vertex is mapped onto a separate computing
node, and, accordingly, each cluster includes only one
vertex.

Step 1.2. An initial schedule ξ0(v) = (tv, jv) is spec-
ified by determining launch time tv iteratively by the
TPF tiers:

Here,

where sv' is calculated by formula (9). The number of
cores jv allocated to vertex v is determined as ∀v ∈
(jv = mv).

Step 1.3. G0 = 〈V, E, init, fin, δ, γ, ω0, ξ0〉.
Step 1.4. End of the procedure.

4.3. Procedure Constructing Configuration Gi + 1

We define a subcritical path as a path having maxi-
mum cost among all paths containing at least one
unconsidered arc. The procedure constructing config-
uration Gi + 1 is as follows:

Step 3.1. Find a subcritical path in  = (e1, …, en).
Step 3.2. Find the first unconsidered arc ej (1 ≤ j ≤

n) in  and mark it as a considered one.
Step 3.3. If i = 0, then mark vertex init(ej) as a fixed

one.
Step 3.4. If vertices init(ej) and fin(ej) are fixed, go

to step 3.14.
Step 3.5. If vertex fin(ej) is not fixed, then v'' :=

fin(ej), v' := init(ej).
Step 3.6. If vertex init(ej) is not fixed, then v'' :=

init(ej), v' := fin(ej).
Step 3.7. Construct clustering function ωi + 1 that

differs from function ωi by only one value: ωi + 1(v'') :=
ωi(v').

Step 3.8. Construct schedule ξi + 1.
Step 3.9. Gi + 1 = 〈V, E, init, fin, δ, γ, ωi + 1, ξi + 1〉.
Step 3.10. Find a critical path  in Gi.
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Step 3.11. Find a critical path  in Gi + 1.
Step 3.12. If u( ) ≤ u( ), go to Step 3.16.
Step 3.13. Gi + 1 := Gi.
Step 3.14. If there are unconsidered arcs in , go to

Step 3.2.
Step 3.15. If there are unconsidered arcs in Gi, go to

Step 3.1.
Step 3.16. End of the procedure.

4.4. Procedure Constructing Schedule ξi + 1

Let us introduce the following notation: T(x) is the
number of the tier the vertex x belongs to;  =
{v|v ∈ C, ωi(v) = ωi(x)} is the cluster the vertex x
belongs to. The procedure constructing schedule ξi + 1
includes the following steps:

Step 3.8.1. R := .

Step 3.8.2. If R =  or , go to Step

3.8.7.
Step 3.8.3. For h = q, …, T(fin(ej) + 1), perform

Lh + 1 := Lh.
Step 3.8.4.  := {v''};  := \{v''}.
Step 3.8.5. q := q + 1.
Step 3.8.6. Construct a new schedule ξi + 1 by cal-

culating launch times tv for all vertices v ∈ V.
Step 3.8.7. Mark vertex v'' as a fixed one.
Step 3.8.8. End of the procedure.

4.5. Procedure Packing Configuration Gi + 1

The goal of the packing procedure is to minimize
the number of the computing nodes involved. This
procedure is applied to the clusters that contain only
one vertex. This constraint is used because, if there are
two adjacent vertices in a cluster, then transition of one
of them to another cluster can increase the total execu-
tion time of the job. The procedure for packing config-
uration Gi + 1 is as follows:

Step 5.1. M := .
Step 5.2. For all v' ∈ V, do the loop
Step 5.2.1. W = {v|v ∈ V, ωi + 1(v) = ωi + 1(v').
Step 5.2.2. If W ∈ M, go to the next iteration of the

loop.
Step 5.2.3. M := M ∪ {W}.
Step 5.4. E := {W ∈ M||W| = 1}; V := {W ∈ M||W| > 1}.
Step 5.5. For all W' ∈ E, do the loop
Step 5.5.1. For l = 1, …, r, do the loop
Step 5.5.1.1. If W' ∩ Ll = , go to the next iteration

of the loop.
Step 5.5.1.2. For all W' ∈ V, do the loop

+1iy

+1iy iy

�iy

ω ( )i xW

ω ∩( ') ( '')i TW Lv v

/0 ω
∈

≤∑ ( ')| |
i

R

j Pv v

v

+( '') 1TL v ( '')TL v ( '')TL v

/0

/0



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 42  No. 1  2016

METHODS OF RESOURCE MANAGEMENT 23

Step 5.5.1.2.1. If W'' ∩ Ll = , go to the next itera-
tion of the loop.

Step 5.5.1.2.2. Take v' ∈ W'.
Step 5.5.1.2.3. Take v'' ∈ W''.

Step 5.5.1.2.4. If jv' + , go to
the next iteration of the loop.

Step 5.5.1.2.5. i := i + 1.
Step 5.5.1.2.6. Construct clustering function ωi + 1

that differs from function ωi by only one value:
ωi + 1(v') = ωi + 1(v'').

Step 5.5.1.2.7. W'' := W'' ∪ W'.
Step 5.5.1.2.8. Go to Step 5.5.3.
Step 5.5.1.3. End of loop.
Step 5.5.2. End of loop.
Step 5.5.3. Go to the next iteration of the loop.
Step 5.6. End of loop.
Step 5.7. End of the procedure
Note that Step 5.2 organizes the loop that con-

structs the set of all clusters M that constitute the job.
On Step 5.4, the set E of unitary clusters (clusters con-
taining only one vertex) and the set B of multiclusters
(clusters containing two or more vertices) are calcu-
lated. Step 5.5 organizes the loop over all unitary clus-
ters. For every unitary cluster, we find a tier of the par-
allel form to which the given unitary cluster belongs.
In the framework of this tier, we try to combine the
unitary cluster with some multicluster. This is possible
if the multicluster uses not all processor cores and the
number of free cores is sufficient in order to perform
the unitary cluster being joined.

5. STUDY OF THE POS ALGORITHM
The POS algorithm was studied on the following

two classes of jobs: multicriteria optimization (MCO)
and random jobs (RJ). Further, we consider both
classes.

5.1. The MCO Class
The MCO class includes computational jobs in the

field of multicriteria optimization, which constitute a

/0

+∈ ∩
> ω∑ 1''

( '')
l

iW L
jvv

v

large portion of load of modern supercomputers and
distributed computing systems. The TPF of job graphs
from the MCO class consists of three tiers. The first
and third tiers of the TPF contain one vertex each. The
second tier contains w vertices. The number w is spec-
ified upon graph generation. The vertex from the first
tier is connected by arcs with all vertices of the second
tier. To each task–vertex, two numbers—maximum
scalability mν of the task and the task execution time tν
on one processor—are assigned. Numbers mν and tν
are constant for all tasks. Similarly, to each arc, the
amount of data transmitted δ is assigned, which is the
same for all arcs. Figure 4 shows an example of a job
graph from the MCO class for the width w = 100.

5.2. The RJ Class
The RJ class includes random jobs with different

numbers of vertices and arcs. A qualitative character-
istic of a job graph in the RJ class is the ratio T/Δ,
where T is an average time of job execution on one
core and Δ is an average arc weight. In terms of this
parameter, the following three important groups can
be identified in the RJ class [17]:

1. M1. Balanced job graphs with T/Δ. For these
jobs, time required for data transmission is compara-
ble with the computation time.

2. M2. Coarse-grained job graphs with T/Δ.
In these jobs, the major part of time is spent on calcu-
lation.

3. M3. Fine-grained job graphs with T/Δ. In these
jobs, the major part of time is spent on data transmis-
sion, while calculations take insignificant time.

5.3. Results of Experiments
In this section, we present results of computational

experiments on comparison of the POS algorithm
with other known algorithms.

In the first series of the experiments, we studied
density of schedules generated by the POS algorithm.
Under the density, we mean here the quantity that is
inversely proportional to the number of the computing

Table 3. Parameters of job graphs

Parameter Semantics Value

mν Task scalability 20

tν Task execution time on one core 40

δM1 Average arc weight for the group M1 40

δM2 Average arc weight for the group M2 10

δM3 Average arc weight for the group M3 400

d The number of cores on computing 
node

100Fig. 4. An example of a job graph from the MCO class.

v1 v2 v3 v100

v0

v101

...

Tier 1

Tier 2

Tier 3
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Table 4. Comparison of algorithms POS, DSC, and Min–Min for group M1

2*no. 2*l 2*w 2*|V| 2*|E|
The number of computing nodes involved Ratio of job execution times

POS DSC Min–Min DSC/POS Min–Min/POS

1 5 10–20 51 126 7 21 4 3.78 8.86
2 10 10–20 117 296 4 36 4 3.67 9.53
3 10 20–30 211 505 16 68 6 3.77 8.36
4 20 5–10 137 252 2 46 2 10.19 17.74

Average value 5.35 11.13

Table 5. Comparison of algorithms POS, DSC, and Min–Min for group M2

2*no. 2*l 2*w 2*|V| 2*|E|
The number of computing nodes involved Ratio of job execution times

POS DSC Min–Min DSC/POS Min–Min/POS

1 5 10–20 49 113 3 25 4 6.67 5.67
2 10 10–20 130 390 12 42 4 4.79 2.51
3 10 20–30 206 464 17 73 6 4.05 3.47
4 20 5–10 141 290 13 41 2 4.79 1.47

Average value 5.08 3.28

Table 6. Comparison of algorithms POS, DSC, and Min–Min for group M3

2*no. 2*l 2*w 2*|V| 2*|E|
The number of computing nodes involved Ratio of job execution times

POS DSC Min–Min DSC/POS Min–Min/POS

1 5 10–20 59 190 4 21 4 4.50 13.15
2 10 10–20 123 378 3 34 4 4.89 42.46
3 10 20–30 201 453 9 61 6 2.06 10.78
4 20 5–10 133 287 2 29 2 3.13 7.88

Average value 3.64 18.57

nodes used for the job execution. First, we studied
schedule density for tasks from the MCO class. Exper-
iments were carried out for three values of the job
graph width w: 100, 200, and 300. For all vertices and
arcs of the graphs, identical weight values and labeling
were used, which are shown in Table 1.

Results of the experiments are shown in Fig. 5a in
the form of dependence of the number of the comput-
ing nodes used on the number of the processor cores in
one computing node. The plots demonstrate that,
when the number of cores in a computing node
increases, the schedule density for MCO jobs
increases and tends to its maximum value equal to 1 in
all considered cases. It should be noted that the sched-
ule density grows considerably when the job graph
width increases.

Then, we studied schedule density for tasks from
the RJ class. Experiments were carried out for three
values of the job graph width w: 30, 50, and 70. For all
vertices and arcs of the graphs, identical weight values
and labeling were used, which are shown in Table 2.

Results of the experiments are shown in Fig. 5b.
The plots demonstrate that, when the number of cores
in a computing node increases, the schedule density
for RJ jobs also increases and tends to its maximum
value equal to 1 in all considered cases. It should be
noted that the schedule density grows considerably
upon increase of the job graph width.

5.4. Comparison of POS with Other Algorithms

In the second series of the experiments, we studied
efficiency of the POS algorithms compared to the
DSC [17] and Min—Min [16] scheduling algorithms.
To this end, we prepared three groups of job graphs—
M1, M2, and M3—with the parameters shown in
Table 3.

In each group, graph height l and weight w were
varied. Results of the experiments are presented in
Tables 4–6. We compared the POS algorithm with the
DSC and Min—Min algorithms by calculating the
numbers of the computing nodes used and the ratios of
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the job execution times by the DSC and Min–Min
algorithms to the job execution time by the POS algo-
rithm.

The results of the experiments show that, for vari-
ous jobs from the MCO and RJ classes, the POS algo-
rithm generates schedules that are more efficient than
those generated by the DSC and Min–Min algo-
rithms. This is achieved owing to the facts that the
POS algorithm analyzes all data dependencies like the
DSC algorithm and ensures possibility of distribution
of tasks over processor cores like the Min–Min algo-
rithm.

6. CONCLUSIONS

In the paper, we discussed resource management in
problem-oriented distributed computing environ-
ments. A new model of the computing environment
and POS (problem-oriented scheduling) algorithm for
scheduling resources for the workflow applications are
suggested. The algorithm allows one to schedule exe-
cution of one task on several processor cores with
regard to constraints on scalability of the task. Results
of computational experiments on studying adequacy
and efficiency of the proposed algorithm for work in
problem-oriented distributed computing environ-
ments are presented.
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