
Parallel Method of Pseudoprojection
for Linear Inequalities

Irina Sokolinskaya(B)

South Ural State University, 76 Lenin prospekt, Chelyabinsk 454080, Russia
Irina.Sokolinskaya@susu.ru

Abstract. This article presents a new iterative method for finding an
approximate solution of a linear inequality system. This method uses
the notion of pseudoprojection which is a generalization of the opera-
tion of projecting a point onto a closed convex set in Euclidean space.
Pseudoprojecting is an iterative process based on Fejer approximations.
The proposed pseudoprojection method is amenable to parallel imple-
mentation exploiting the subvector method, which is also presented in
this article. We prove both the subvector method correctness and the
convergence of the pseudoprojection method.

Keywords: Linear inequality system · Iterative method
Fejer approximations · Pseudoprojection · Parallel algorithm
Convergence

1 Introduction

In various numerical problems, we are often confronted with the task of solving
a system of linear inequalities:

li(x) =
n∑

j=1

aijxj − bi � 0 (i = 1, . . . ,m) (1)

under the condition that system (1) is consistent. In the general case, the task
of solving a system of linear inequalities is a difficult one. Thus, in practice,
methods making it possible to find an approximate solution in a finite number
of iterations are frequently applied. In [1,2], Motzkin and Agmon proposed a
relaxation method for finding an approximate solution of a consistent system
of linear inequalities. Let us consider the main idea of this relaxation method.
When considering system (1), it is convenient to use a geometric language. Thus,
we look upon x = (x1, . . . , xn) as a point in n-dimensional Euclidean space
R

n, and each inequality li(x) � 0 as a half-space Pi. The set of solutions of

I. Sokolinskaya—The study has been partially supported by the RFBR according to
research project No. 17-07-00352-a and by the Government of the Russian Federation
according to Act 211 (contract No. 02.A03.21.0011).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 216–231, 2018.
https://doi.org/10.1007/978-3-319-99673-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_16&domain=pdf


Parallel Method of Pseudoprojection 217

system (1) therefore is the convex polytope M =
m⋂

i=1

Pi. Each equation li(x) = 0

defines an hyperplane Hi. In [2], the following iterative algorithm for finding an
approximate solution of the system (1) is proposed. Below, λ such that 0 < λ < 2
is a parameter of the algorithm. The parameter λ is called the coefficient of
relaxation.

1. Choose an arbitrary point x0 ∈ R
n.

2. x := x0.
3. If x ∈ M then a solution is found; go to Step 8.
4. Select a half-space Pi such that dist(x, Pi) = max

j
dist(x, Pj)1.

5. Calculate the point x′ which is the orthogonal projection of x onto hyperplane
Hi.

6. x := x + λ(x′ − x).
7. Go to Step 3.
8. Stop.

Thus, the algorithm computes a sequence of points x0, x1, . . . , xk, xk+1, . . .,
where xk+1 = xk + λ(x′

k − xk), and x′
k is the orthogonal projection of the point

xk onto hyperplane Hi bounding the half-space Pi, so that

dist(xk, Pi) = max
j

dist(xk, Pj).

There are two alternatives: (1) the process terminates after K steps with the
point xk ∈ M ; (2) the process continues indefinitely, producing an infinite
sequence {xk}. In [1], Agmon showed that if 0 < λ < 2 and the sequence {xk}
is infinite, then xk converges, as k → ∞, to a point on the boundary of the
polytope M . In this case, we can use the condition dist(xk, Pi) < ε as a stopping
criterion. Here, ε > 0 is an arbitrarily small positive quantity. After stopping,
the last point xk is taken as an approximate solution of system (1).

The Motzkin–Agmon method has been extended in a number of works. In [3],
a generalized relaxation method was proposed and investigated, based on the
introduction of so-called subcavities. In certain cases, this generalized method
provides faster convergence in comparison with the Motzkin–Agmon method.
In [4,5], an extension of the relaxation method was considered for finding the
common point of convex sets. In [6], the relaxation method is extended for solv-
ing systems of non-linear inequalities. In [7], a new parameter “cone angle” is
introduced and the convergence and finiteness of the relaxation method for dif-
ferent values of this parameter are investigated. In [8,9], an extension of the
relaxation method for systems with an infinite number of linear inequalities in
a finite-dimensional space was proposed and investigated. In [10], the underre-
laxation method with 0 < λ < 1 is studied, and new bounds on convergence are
obtained when the linear inequalities are processed in a cyclical order. In [11,12],
a combined relaxation method for non-linear convex variational inequalities is
described and studied.
1 Here dist(x, P ) = inf {‖x − y‖ : y ∈ P}.



218 I. Sokolinskaya

In 1922, Leopold Fejer introduced the following definition of the closeness of
points to a closed set M in the Euclidean space R

n (see [13]). If x and x′ are
points of Rn such that

‖x − y‖ > ‖x′ − y‖ (2)

for every y ∈ M , then we say that x′ is point-wise closer than x to the set
M . If x is such that there is no point x′ which is point-wise closer than x to
M , then x is called the closest point to the set M . Fejer pointed out that the
set of closest points to M is identical to the convex hull of the set M . Using
this observation, Eremin in [14,15] introduced and investigated Fejer mappings,
making it possible to construct iterative methods for solving problems of vari-
ous types: systems of convex inequalities and problems of convex programming,
ill-posed problems of mathematical physics in the presence of additional func-
tional constraints, and others. The notion of pseudoprojecting a point onto a
convex bounded set was introduced in [16]. The pseudoprojection operation is
an extension of the projection operation using Fejer mappings. Based on the
pseudoprojection operation, the authors of [16] developed a pseudoprojection
method for solving linear inequality systems. This method is an extension of the
relaxation method proposed by Motzkin and Agmon. Based on the pseudopro-
jection method, a set of parallel methods for solving large-scale non-stationary
linear programming problems was developed and investigated in [16–19].

An iterative method for solving systems of linear inequalities based on deter-
mining the centroid is proposed in [20]. Each inequality defines a half-space of
feasible points. The method starts with an arbitrary point in R

n as an initial
approximation, and then calculates at each step the centroid of a subsystem
of masses placed at the reflections of the previous iterate with respect to the
bounding hyperplanes of only the violated half-spaces defined by the system of
inequalities. This centroid is taken as the new iterate. In [21], a similar method
is presented. In this method, each iterate lies in the half line determined by
the previous one and a convex combination of its orthogonal projections on all
the half spaces defined by the inequalities. The authors of [22] describe another
iterative method for solving a system of linear inequalities in which each step
consists of finding the orthogonal projection of the current point onto a hyper-
plane corresponding to a surrogate constraint constructed through a positive
combination of a group of violated constraints. Note that the last three methods
can be efficiently parallelized.

The present article is devoted to the development and investigation of a par-
allel pseudoprojection method to find an approximate solution of a system of
linear inequalities. The method starts with an arbitrary point in R

n as an ini-
tial approximation, and then calculates a pseudoprojection of this point onto
a convex polytope defined as the set of feasible solutions of linear inequality
system (1). The subvector method is used to parallelize the Fejer process. The
main idea of this method is that the vector determining the current approxima-
tion is divided into subvectors. For each subvector, a certain number of Fejer
iterations is performed in parallel. Then the modified subvectors are combined



Parallel Method of Pseudoprojection 219

into a single vector. The calculations are repeated until the required precision of
approximation is obtained.

The rest of the paper is organized as follows. The formal definitions of Fejer
mapping, Fejer process, as well as that of the pseudoprojection operation are
given in Sect. 2. Section 3 is devoted to describing the algorithm for constructing
a pseudoprojection onto a convex closed set. Section 4 describes the method of
subvectors used for parallelization of the pseudoprojection algorithm. In Sect. 5,
we prove the convergence theorem for the pseudoprojection calculation algo-
rithm. The results obtained are summarized in Sect. 6, and further research
directions are outlined herein.

2 Fejer Mappings and the Pseudoprojection Operation

Let us consider a consistent system of m linear inequalities,

Ax � b, (3)

given in the n-dimensional Euclidean space R
n and written in matrix form. The

matrix A has dimension m × n. Let M be a polytope defined as the set of
feasible solutions of linear inequality system (3). Such a polytope is always a
closed convex set. A single-valued mapping ψ : Rn → R

n is said to be fejerian
relatively to a set M (or briefly, M -fejerian) if

ψ (y) = y,∀y ∈ M ; ‖ψ (x) − y‖ < ‖x − y‖ , ∀y ∈ M, ∀x /∈ M. (4)

Let ai be an i-th row of the matrix A (i = 1, . . . ,m). Let us denote by 〈ai, x〉
the dot product of vectors ai and x. It is known [15,23] that the mapping

ϕ (x) = x − λ

m

m∑

i=1

max {〈ai, x〉 − bi, 0}
‖ai‖2

· ai (5)

is a continuous single-valued M -fejerian mapping for the relaxation coefficient
0 < λ < 2. We will use the notation

ϕs(x) = ϕ . . . ϕ(x)︸ ︷︷ ︸
s

.

The Fejer process generated by the mapping ϕ for an arbitrary initial approx-
imation x0 ∈ R

n is the sequence {ϕs(x0)}+∞
s=0. It is known [15] that the Fejer

process converges to a point belonging to the polytope M :

{ϕs(x0)}+∞
s=0 → x̄ ∈ M. (6)

Let us denote this concisely as lim
s→∞ ϕs(x0) = x̄. Let the ϕ-projection (pseudo-

projection) of a point x ∈ R
n on the polytope M be understood as the mapping

πϕ
M (x) = lim

s→∞ ϕs(x).



220 I. Sokolinskaya

3 Parallel Algorithm for Constructing a Pseudoprojection

Let us introduce the following notation. Given an arbitrary linear subspace
P ⊂ R

n, let us denote by πP (x) the orthogonal projection of x ∈ R
n onto

the linear subspace P. Everywhere below, a linear subspace will be called simply
a subspace. Denote by ρ(P, x) = min

p∈P

‖p − x‖ the distance between the point x

and the subspace P. Let the linear manifold L be constructed from subspace
P by translating it by a vector z: L = P + z. Denote by πL (x) the orthogonal
projection of x ∈ R

n onto the linear manifold L:

πL (x) = πP (x) + z. (7)

Let ϕ ∈ {Rn → R
n} be a single-valued continuous M -fejerian mapping, where

M is a convex closed set. Let us define a decomposition of the space R
n into a

direct sum of orthogonal subspaces: Rn = P1 ⊕ . . . ⊕ Pr, where Pi⊥Pj for i �= j.
Let us construct a linear manifold Li for each subspace

Pi (i = 1, . . . , r)

in the following way. Suppose that x̄i ∈ Arg min
x∈M

ρ(Pi, x). Define z̄i = π
P

⊥
i
(x̄i) ∈

P
⊥
i . Here, P

⊥
i denotes the orthogonal complement to the subspace Pi. Let us

construct the linear manifold Li by translating Pi by a vector z̄i:

Li = Pi + z̄i. (8)

For each i ∈ {1, . . . , r}, define the mapping ϕi ∈ {Rn → Li} as

ϕi (x) = πLi
(ϕ (πLi

(x))) . (9)

Assume that s is a positive integer and ε is a positive real number. The following
algorithm calculates the pseudoprojection of the point 0 ∈ R

n (0 is the zero
vector) onto the polytope M .

Algorithm S :

1. k := 0; x0 = 0 ∈ R
n.

2. xk+1 :=
r∑

i=1

(
ϕi

s (πLi
(xk)) − z̄i

)
.

3. If ‖xk+1 − xk‖ < ε ∨ dM (xk+1) < ε then go to 6.
4. k := k + 1.
5. Go to 2.
6. Stop.

The performance of algorithm S for n = 2 and s = 2 is shown in Fig. 1. To
apply the algorithm S to an arbitrary initial point x0 ∈ R

n, you must transfer
the origin to the point x0. In Step 3, the algorithm computes the residual function

dM =
m∑

j=1

max {〈aj , x〉 − bj , 0}. (10)



Parallel Method of Pseudoprojection 221

Fig. 1. The work of algorithm S: x1
k = πL1(xk), x1

k+1 = ϕ1
2(x1

k); x2
k = πL2(xk),

x2
k+1 = ϕ2

2(x2
k).

This function determines the degree of closeness of the point xk+1 to the polytope
M . We will show later on that the positive integer s is an important parameter
influencing the potential scalability of algorithm S. By increasing s, we increase
the resource of parallelism inherent in algorithm S. However, if one takes too
large a value for the parameter s, then the sequence {xk} may converge to
a point that does not belong to the polytope M . In this case, the iterative
process will stop when the condition ‖xk+1 − xk‖ < ε, included in the stopping
criterion, is satisfied. If this happens, one needs to decrease the value of s and
repeat the computational process. It is obvious that the most compute-intensive
step of algorithm S is Step 2, in which the Fejer process is implemented. To
parallelize this step, the subvector method discussed below can be applied. The
main idea of the method is as follows. For each subspace, a simultaneous Fejer
process is performed. After every s steps, the results obtained on the subspaces
are combined into one vector which is taken as the next approximation. If the
stopping criterion checked in Step 3 is satisfied, then the last approximation is
accepted as pseudoprojection. Otherwise, calculations continue.

4 Subvector Method

Let us consider the subvector method, applied to parallelize Step 2 of the S
algorithm. Let r ∈ N be such that r � n, where n is the space dimension. For



222 I. Sokolinskaya

simplicity, we always assume that r is a multiple of n: n = r · l. Assume that

{e1, . . . , en} (11)

is an orthonormal basis of the space R
n. Let us define the linear subspaces as

Pi = Lin({e1+(i−1)l, . . . , el+(i−1)l}) (12)

for i = 1, . . . , r. In Eq. (12), Lin denotes the linear hull of vectors. It is obvious
that Pi⊥Pj for i �= j, and P1 ⊕ . . . ⊕ Pr = R

n. Let x̄i ∈ Arg min
x∈M

ρ(Pi, x).

Denote z̄i = π
P

⊥
i
(x̄i) ∈ P

⊥
i (i = 1, . . . , r). For i = 1, . . . , r, define the mapping

τi ∈ {Rn → R
l} as follows. Let (x1, . . . , xn) be the coordinates of a vector x ∈ R

n

in the orthonormal basis (11). Then,

τi(x) = (x1+(i−1)l, . . . , xl+(i−1)l). (13)

Denote by τ̄i : Pi → R
l the restriction of the mapping τi to subspace Pi ⊂ R

n.
In the basis (11), an arbitrary vector has the following coordinates:

x = (0, . . . , 0, x1+(i−1)l, . . . , xl+(i−1)l, 0, . . . , 0).

By comparing this with (13), we see that τ̄i is a one-to-one correspondence.
Hence, τ̄i has the inverse mapping τ̄−1

i . In the context of Eqs. (5) and (8), let us
define the mapping ϕi ∈ {Rn → Li} as

ϕi(x) = τ̄−1
i

(
τi(x) − λ

m

m∑
j=1

max
{〈τi(aj), τi(x)〉 +

〈
aj , z̄

i
〉 − bj , 0

}
‖aj‖2 · τi(aj)

)
. (14)

The following theorem shows that we can use Eq. (14) to calculate ϕi(x) in
Step 2 of algorithm S.

Theorem 1. The mapping ϕi (i = 1, . . . , r) defined by Eq. (14) satisfies Eq. (9).

Proof. From Eq. (5), we obtain

πLi
(ϕ (πLi

(x))) = πLi

⎛

⎝πLi
(x) − λ

m

m∑

j=1

max {〈aj , πLi
(x)〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ .

By expanding the parentheses, we obtain

πLi
(ϕ (πLi

(x))) = πLi
(x) − πLi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πLi
(x)〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ .

According to Eq. (8), we have

πLi
(ϕ (πLi

(x)))

= πPi
(x) + z̄i −

⎛

⎝πPi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x) + z̄i〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ + z̄i

⎞

⎠ .



Parallel Method of Pseudoprojection 223

By expanding the parentheses and eliminating z̄i, we transform the equation
above to the form

πLi
(ϕ (πLi

(x))) = πPi
(x) − πPi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x) + z̄〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ .

By distributivity of the dot product over the addition, this is equivalent to the
equation

πLi
(ϕ (πLi

(x)))

= πPi
(x) − πPi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2

· aj

⎞

⎠ .

Transform now the right side of the last equation as follows:

πLi (ϕ (πLi (x)))

= τ̄−1
i

(
τ̄i

(
πPi (x) − πPi

(
λ

m

m∑
j=1

max {〈aj , πPi (x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · aj

)))
.

Since the mapping τ̄i is linear, this implies that

πLi (ϕ (πLi (x)))

=τ̄−1
i

(
τ̄i (πPi (x)) − τ̄i

(
πPi

(
λ

m

m∑
j=1

max {〈aj , πPi (x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · aj

)))
.

By comparing the subscripts in (12) and (13), we find that τ̄i (πPi
(x)) = τi (x).

Applying this to the right side of the preceding equation, we obtain

πLi
(ϕ (πLi

(x)))

= τ̄−1
i

⎛

⎝τi (x) − τi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2

· aj

⎞

⎠

⎞

⎠ .

The mapping τ̄i is linear, therefore this means that

πLi (ϕ (πLi (x))) =

τ̄−1
i

(
τi (x) − λ

m

m∑
j=1

max {〈aj , πPi (x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · τi (aj)

)
.

Let us compare again the subscripts in (12) and (13), we obtain

πLi (ϕ (πLi (x))) = τ̄−1
i

(
τi (x) − λ

m

m∑
j=1

max {〈τi(aj), τi(x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · τi (aj)

)
.

Finally, compare the last equation and Eq. (14), and we obtain that

ϕi (x) = πLi
(ϕ (πLi

(x))) .

Q.E.D.



224 I. Sokolinskaya

5 Convergence Theorem

We will prove now the convergence theorem for algorithm S. For this we will
need the two lemmas given below. The first lemma shows that each mapping
ϕi ∈ {Li → Li} constructed by algorithm S is Fejerian for the set Li ∩ M .

Lemma 1. Consider a convex closed set M ⊂ R
n and a single-valued M -

fejerian mapping ϕ ∈ {Rn → R
n}. Let P be a proper linear subspace of the space

R
n, and suppose that T = P

⊥ is the orthogonal complement of the subspace P.
Assume that

x̄ ∈ Arg min
x∈M

ρ(P, x).

Write x̄ as a sum of orthogonal vectors taken from the subspaces P and T:

x̄ = πP(x̄) + πT(x̄).

Denote z̄ = πT(x̄) ∈ T. Construct the linear manifold L as a translation of P by
the vector z̄:

L = P + z̄.

Define the mapping ϕL ∈ {L → L} as

ϕL (x) = πL (ϕ (πL (x))) . (15)

Take
ML = L ∩ M. (16)

Then, the mapping ϕL is ML-fejerian.

Proof. Let us start by showing that

ϕL(y) = y, ∀y ∈ ML. (17)

Let y ∈ ML. Then, by (16), y ∈ M . Since the mapping ϕ is M -fejerian, then
ϕ(y) = y. Taking into account that y ∈ L, we see that

ϕL(y) = πL(ϕ(πL(y))) = πL(ϕ(y)) = πL(y) = y,

and so Eq. (17) holds.
Let us show now that

‖ϕL(x) − y‖ < ‖x − y‖ , ∀y ∈ ML, ∀x /∈ ML. (18)

Assume that
y ∈ ML, x ∈ L, x /∈ ML.

By (16), it follows that x /∈ M in this case. Since the mapping ϕ is M -fejerian,
then

‖ϕ(x) − y‖ < ‖x − y‖ . (19)



Parallel Method of Pseudoprojection 225

Construct the decomposition of ϕ(x) and y as a sum of two orthogonal vectors
belonging to P and T:

ϕ(x) = πP(ϕ(x)) + πT(ϕ(x)), (20)
y = πP(y) + z̄. (21)

We now substitute these decompositions into (19) and obtain

‖πP(ϕ(x)) + πT(ϕ(x)) − (πP(y) + z̄)‖ < ‖x − y‖ , (22)

which, after rearrangement, yields

‖(πP(ϕ(x)) − πP(y)) + (πT(ϕ(x)) − z̄)‖ < ‖x − y‖ . (23)

Note that (πP(ϕ(x)) − πP(y)) ∈ P and (πT(ϕ(x)) − z̄) ∈ T are mutually orthog-
onal vectors. As we know, the square of the norm of a sum of orthogonal vectors
is equal to the sum of the squares of their norms, so it follows from (23) that

‖πP(ϕ(x)) − πP(y)‖2 + ‖πT(ϕ(x)) − z̄‖2 < ‖x − y‖2. (24)

The left side of the inequality is a sum of two non-negative terms. This means
that, if we remove the second one, we obtain a valid inequality:

‖πP(ϕ(x)) − πP(y)‖2 < ‖x − y‖2,
from which, in turn, we get

‖πP(ϕ(x)) − πP(y)‖ < ‖x − y‖ . (25)

By construction of L, we have πP(ϕ(x)) = πL(ϕ(x))−z̄. Substitute this expression
into (25), and we obtain

‖πL(ϕ(x)) − z̄ − πP(y)‖ < ‖x − y‖ ,

which is equivalent to

‖πL(ϕ(x)) − (πP(y) + z̄)‖ < ‖x − y‖ . (26)

But x ∈ L, so we may conclude that x = πL(x). If we substitute the expression
πL(x) for x into the left side of (26), then we obtain

‖πL(ϕ(πL(x))) − (πP(y) + z̄)‖ < ‖x − y‖ .

Taking into account (15) and (21), this implies

‖ϕL(x) − y‖ < ‖x − y‖ ,

i.e., inequality (18) holds. Q.E.D.

To prove the convergence theorem, we need an additional lemma.



226 I. Sokolinskaya

Lemma 2. Let {xk} be the sequence of points produced by algorithm S in Step 2:

xk+1 :=
r∑

i=1

(
ϕi

s (xk) − z̄i
)
; k = 0, 1, . . . (27)

Under the conditions of algorithm S, let us define

MLi
= Li ∩ M (i = 1, . . . , r).

If
xi
0 = πLi

(x0), xi
k+1 = ϕi(xi

k), (28)

then
ϕi

s (xk) = xi
s·(k+1), ∀k ∈ Z�0. (29)

Proof. Our proof will be by induction on k. Let k = 0. By Eq. (9), we have

ϕi
s (x0) = ϕs−1

i (πLi
(ϕ (πLi

(x0)))) .

According to the first equation in (28), we obtain

ϕi
s (x0) = ϕs−1

i

(
πLi

(
ϕ

(
xi
0

)))
. (30)

But xi
0 ∈ Li, so we may write xi

0 = πLi
(xi

0). Now we substitute the expression
πLi

(xi
0) for xi

0 into (30), and obtain

ϕi
s (x0) = ϕs−1

i

(
πLi

(
ϕ

(
πLi

(
xi
0

))))
.

Taking (9) into account, we get

ϕi
s (x0) = ϕi

s
(
xi
0

)
.

By applying the second equation from (28), we obtain

ϕi
s (x0) = ϕs−1

i

(
xi
1

)
.

If we repeat this substitution another (s − 1) times, we obtain

ϕi
s (x0) = xi

s,

that is, the induction basis holds. Now let k > 0, and consider the trivial equation

ϕi
s (xk) = ϕi

s (xk) . (31)

According to (27), xk :=
r∑

j=1

(
ϕs

j (xk−1) − z̄j
)
. Substitute this expression into

the right side of (31) to obtain

ϕi
s (xk) = ϕi

s

⎛

⎝
r∑

j=1

(
ϕs

j (xk−1) − z̄j
)
⎞

⎠ .



Parallel Method of Pseudoprojection 227

From this, by the induction hypothesis, it follows that

ϕi
s (xk) = ϕi

s

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠ ,

which is equivalent to

ϕi
s (xk) = ϕs−1

i

⎛

⎝ϕi

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠

⎞

⎠ .

Using now (9), we obtain

ϕi
s (xk) = ϕs−1

i

⎛

⎝πLi

⎛

⎝ϕ

⎛

⎝πLi

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠ .

According to (7) and (8), this implies

ϕi
s (xk) = ϕs−1

i

⎛

⎝πLi

⎛

⎝ϕ

⎛

⎝πPi

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠ + z̄i

⎞

⎠

⎞

⎠

⎞

⎠ .

Remember that xj
s·k − z̄j ∈ Pj (j = 1, . . . , r) and Pi⊥Pj for i �= j. Then the

last implies
ϕi

s (xk) = ϕs−1
i

(
πLi

(
ϕ

(
xi

s·k − z̄i + z̄i
)))

,

i.e.
ϕi

s (xk) = ϕs−1
i

(
πLi

(
ϕ

(
xi

s·k
)))

. (32)

Since xi
s·k ∈ Li, we have xi

s·k = πLi

(
xi

s·k
)
. Substitute the expression πLi

(
xi

s·k
)

for xi
s·k into (32) and obtain

ϕi
s (xk) = ϕs−1

i

(
πLi

(
ϕ

(
πLi

(
xi

s·k
))))

.

Together with Eq. (9), this implies

ϕi
s (xk) = ϕs−1

i ϕi

(
xi

s·k
)
,

which is equivalent to
ϕi

s (xk) = ϕi
s
(
xi

s·k
)
.

By applying the second equation from (28), we obtain

ϕi
s (xk) = ϕs−1

i

(
xi

s·k+1

)
.

Repeating this substitution another (s − 1) times, we finally arrive at

ϕi
s (xk) = xi

s·k+s,

i.e.
ϕi

s (xk) = xi
s(k+1).

Q.E.D.



228 I. Sokolinskaya

Now we are ready to prove the convergence theorem for algorithm S.

Theorem 2. Let {xk} be the sequence of points produced by algorithm S in
Step 2:

xk+1 :=
r∑

i=1

(
ϕi

s (xk) − z̄i
)
; k = 0, 1, . . . (33)

Then
{xk}+∞

k=0 → x̄ ∈ M.

Proof. Under the conditions of algorithm S, let us define

MLi
= Li ∩ M (i = 1, . . . , r).

According to Lemma 1, the mapping ϕi is MLi
-fejerian. Take

xi
0 = πLi

(x0), xi
k+1 = ϕi(xi

k). (34)

The continuity of the mappings πLi
and ϕ (see [23]) implies the continuity of

the mappings ϕi. Hence, by Lemma 39.1 in [23], we may affirm that

{xi
k}+∞

k=0 → x̄i ∈ MLi
, ∀i ∈ {1, . . . , r}. (35)

Now let us define

x̄ =
r∑

i=1

(
x̄i − z̄i

)
. (36)

Fix an arbitrary real number ε > 0. By (35), there exists a number Ki such that

∥∥xi
k − x̄i

∥∥ <
ε√
r
, ∀k > Ki. (37)

Let K = max
1�i�r

Ki. We will show that the inequality ‖xk − x̄‖ < ε holds for any

k > K. Fix an arbitrary k > K. By (33), we may write

‖xk − x̄‖ =

∥∥∥∥∥

(
r∑

i=1

(
ϕi

s (xk−1) − z̄i
)
)

− x̄

∥∥∥∥∥ ,

and by (36), we obtain

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
ϕi

s (xk−1) − z̄i
) −

r∑

i=1

(
x̄i − z̄i

)
∥∥∥∥∥ .

After rearrangement, this yields

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
ϕi

s (xk−1) − z̄i − x̄i + z̄i
)
∥∥∥∥∥ ,



Parallel Method of Pseudoprojection 229

which is equivalent to

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
ϕi

s (xk−1) − x̄i
)
∥∥∥∥∥ . (38)

According to Lemma 2, this implies

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
xi

s·k − x̄i
)
∥∥∥∥∥ . (39)

Remember now that xi
s·k = πPi

(
xi

s·k
)
+ z̄i and x̄i = πPi

(
x̄i

)
+ z̄i, and substitute

these expressions into (39):

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
πPi

(
xi

s·k
)

+ z̄i − πPi

(
x̄i

) − z̄i
)
∥∥∥∥∥ ,

i.e.

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
πPi

(
xi

s·k
) − πPi

(
x̄i

))
∥∥∥∥∥ . (40)

Note that both vectors under the summation sign in (40) are mutually orthogo-
nal. The square of the norm of a sum of orthogonal vectors is equal to the sum
of the squares of their norms. It thus follows from (40) that

‖xk − x̄‖2 =
r∑

i=1

∥∥πPi

(
xi

s·k
) − πPi

(
x̄i

)∥∥2
.

This is equivalent to

‖xk − x̄‖2 =
r∑

i=1

∥∥πPi

(
xi

s·k
)

+ z̄i − πPi

(
x̄i

) − z̄i
∥∥2

.

Since xi
s·k = πPi

(
xi

s·k
)

+ z̄i and x̄i = πPi

(
x̄i

)
+ z̄i, we obtain

‖xk − x̄‖2 =
r∑

i=1

∥∥xi
s·k − x̄i

∥∥2
.

In view of (37), this implies

‖xk − x̄‖2 <

r∑

i=1

(
ε√
r

)2

= r

(
ε√
r

)2

= ε2,

i.e.
‖xk − x̄‖ < ε.

Q.E.D.



230 I. Sokolinskaya

6 Conclusion

A new iterative method for solving linear inequality systems is proposed in the
article. This method is based on the operation of pseudoprojecting a point onto
a polytope which is defined as the set of feasible solutions of a linear inequal-
ity system in Euclidean space. The pseudoprojection operation is an extension
of the projection operation. It exploits Fejer iterative processes developed by
Eremin in [14,15,23]. For an effective parallelization of the pseudoprojection
algorithm, we suggest here the subvector method. Also, we proved the conver-
gence theorem for the pseudoprojection algorithm. The algorithm that computes
the pseudoprojection was implemented in C++ using the OpenMP parallel pro-
gramming library. Computational experiments have confirmed the effectiveness
of the proposed method of parallelization for computer systems using multi-core
accelerators Intel Xeon Phi [16]. As future research, we intend to do the fol-
lowing: implement the pseudoprojection algorithm in C++ language using the
MPI library and the BSF algorithmic skeleton [24]; perform an analytical and
experimental evaluation of the scalability of this parallel program on cluster
computing systems; compare the proposed algorithm with other parallel itera-
tive algorithms by performing computational experiments on cluster computing
systems.

References

1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392
(1954). https://doi.org/10.4153/CJM-1954-037-2

2. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Can.
J. Math. 6, 393–404 (1954). https://doi.org/10.4153/CJM-1954-038-x

3. Merzlyakov, Y.I.: On a relaxation method of solving systems of linear inequalities.
USSR Comput. Math. Math. Phys. 2, 504–510 (1963). https://doi.org/10.1016/
0041-5553(63)90463-4

4. Bregman, L.M.: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Comput. Math. Math. Phys. 7, 200–217 (1967). https://doi.org/10.1016/0041-
5553(67)90040-7

5. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the
common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1–24 (1967).
https://doi.org/10.1016/0041-5553(67)90113-9

6. Germanov, M.A., Spiridonov, V.S.: On a method of solving systems of non-linear
inequalities. USSR Comput. Math. Math. Phys. 6, 194–196 (1966). https://doi.
org/10.1016/0041-5553(66)90066-8

7. Goffin, J.L.: The relaxation method for solving systems of linear inequalities. Math.
Oper. Res. 5, 388–414 (1980). https://doi.org/10.1287/moor.5.3.388

8. González-Gutiérrez, E., Todorov, M.I.: A relaxation method for solving systems
with infinitely many linear inequalities. Optim. Lett. 6, 291–298 (2012). https://
doi.org/10.1007/s11590-010-0244-4

9. González-Gutiérrez, E., Hernández Rebollar, L., Todorov, M.I.: Relaxation meth-
ods for solving linear inequality systems: converging results. TOP 20, 426–436
(2012). https://doi.org/10.1007/s11750-011-0234-4

https://doi.org/10.4153/CJM-1954-037-2
https://doi.org/10.4153/CJM-1954-038-x
https://doi.org/10.1016/0041-5553(63)90463-4
https://doi.org/10.1016/0041-5553(63)90463-4
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90113-9
https://doi.org/10.1016/0041-5553(66)90066-8
https://doi.org/10.1016/0041-5553(66)90066-8
https://doi.org/10.1287/moor.5.3.388
https://doi.org/10.1007/s11590-010-0244-4
https://doi.org/10.1007/s11590-010-0244-4
https://doi.org/10.1007/s11750-011-0234-4


Parallel Method of Pseudoprojection 231

10. Mandel, J.: Convergence of the cyclical relaxation method for linear inequalities.
Math. Program. 30, 218–228 (1984). https://doi.org/10.1007/BF02591886

11. Konnov, I.: Combined Relaxation Methods for Variational Inequalities. LNE, vol.
495. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56886-2

12. Konnov, I.V.: A modified combined relaxation method for non-linear convex vari-
ational inequalities. Optimization 64, 753–760 (2015). https://doi.org/10.1080/
02331934.2013.820298

13. Fejér, L.: Über die Lage der Nullstellen von Polynomen, die aus Minimumforderun-
gen gewisser Art entspringen. In: Hilbert, D. (ed.) Festschrift, pp. 41–48. Springer,
Heidelberg (1982). https://doi.org/10.1007/978-3-642-61810-9 6

14. Eremin, I.I.: Methods of Fejer’s approximations in convex programming. Math.
Notes Acad. Sci. USSR 3, 139–149 (1968). https://doi.org/10.1007/BF01094336

15. Vasin, V.V., Eremin, I.I.: Operators and Iterative Processes of Fejér Type. Theory
and Applications. Walter de Gruyter, Berlin, New York (2009)

16. Sokolinskaya, I., Sokolinsky, L.: Revised pursuit algorithm for solving non-
stationary linear programming problems on modern computing clusters with many-
core accelerators. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS,
vol. 687, pp. 212–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
55669-7 17

17. Sokolinskaya, I.M.: Scalable algorithm for non-stationary linear programming prob-
lems solving. In: 2017 2nd International Ural Conference on Measurements (Ural-
Con), pp. 49–53 (2017). https://doi.org/10.1109/URALCON.2017.8120685

18. Sokolinskaya, I., Sokolinsky, L.B.: Scalability evaluation of NSLP algorithm for
solving non-stationary linear programming problems on cluster computing systems.
In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 40–53.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0 4

19. Sokolinskaya, I., Sokolinsky, L.B.: On the solution of linear programming problems
in the age of big data. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS,
vol. 753, pp. 86–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67035-5 7

20. Censor, Y., Elfving, T.: New methods for linear inequalities. Linear Algebra Appl.
42, 199–211 (1982). https://doi.org/10.1016/0024-3795(82)90149-5

21. De Pierro, A.R., Iusem, A.N.: A simultaneous projections method for linear
inequalities. Linear Algebra Appl. 64, 243–253 (1985). https://doi.org/10.1016/
0024-3795(85)90280-0

22. Yang, K., Murty, K.G.: New iterative methods for linear inequalities. J. Optim.
Theory Appl. 72, 163–185 (1992). https://doi.org/10.1007/BF00939954

23. Eremin, I.I.: Teoriya lineynoy optimizatsii [The theory of linear optimization]. Pub-
lishing House “Yekaterinburg”, Ekaterinburg (1999). (in Russian)

24. Sokolinsky, L.B.: Analytical estimation of the scalability of iterative numerical
algorithms on distributed memory multiprocessors. Lobachevskii J. Math. 39, 571–
575 (2018). https://doi.org/10.1134/S1995080218040121

https://doi.org/10.1007/BF02591886
https://doi.org/10.1007/978-3-642-56886-2
https://doi.org/10.1080/02331934.2013.820298
https://doi.org/10.1080/02331934.2013.820298
https://doi.org/10.1007/978-3-642-61810-9_6
https://doi.org/10.1007/BF01094336
https://doi.org/10.1007/978-3-319-55669-7_17
https://doi.org/10.1007/978-3-319-55669-7_17
https://doi.org/10.1109/URALCON.2017.8120685
https://doi.org/10.1007/978-3-319-71255-0_4
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1016/0024-3795(82)90149-5
https://doi.org/10.1016/0024-3795(85)90280-0
https://doi.org/10.1016/0024-3795(85)90280-0
https://doi.org/10.1007/BF00939954
https://doi.org/10.1134/S1995080218040121

	Parallel Method of Pseudoprojection for Linear Inequalities
	1 Introduction
	2 Fejer Mappings and the Pseudoprojection Operation
	3 Parallel Algorithm for Constructing a Pseudoprojection
	4 Subvector Method
	5 Convergence Theorem
	6 Conclusion
	References




