ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 4, pp. 571-575. (© Pleiades Publishing, Ltd., 2018.

Analytical Estimation of the Scalability of Iterative Numerical
Algorithms on Distributed Memory Multiprocessors

L. B. Sokolinsky”

(Submitted by E. E. Tyrtyshnikov)
South Ural State University (National Research University),
Lenin prospekt, 76, Chelyabinsk, 454080 Russia
Received November 15, 2017

Abstract—This article presents a new high-level parallel computational model named BSF "—
Bulk Synchronous Farm. The BSF model extends the BSP model to deal with the compute-
intensive iterative numerical methods executed on distributed-memory multiprocessor systems. The
BSF model is based on the master-worker paradigm and the SPMD programming model. The
BSTF model makes it possible to predict the upper scalability bound of a BSF-program with great
accuracy. The BSF model also provides equations for estimating the speedup and parallel efficiency
of a BSF-program.

DOI: 10.1134/51995080218040121

Keywords and phrases: Parallel computation model, bulk synchronous farm, BSF model,
iterative algorithms, distributed memory, scalability bound.

1. INTRODUCTION

One of the most important properties of a numerical algorithm designed for large-scale cluster
systems is scalability. Scalability can be defined as a measure of a parallel system’s capacity to decrease
computation time in proportion to the number of processors. The upper bound of scalability is an integral
characteristic of a parallel algorithm/program. The upper bound of scalability is the least number of
processor nodes for which the speedup takes the maximal value. It is valuable to be able to estimate the
upper bound of scalability in early phases of program development; the parallel computation model is
a tool providing this possibility. A model of computation is a framework for specifying and analyzing
algorithms or programs [1]. Many parallel computation models have been proposed for distributed-
memory multiprocessors. The most famous of these models are the BSP model family (see [2—T7])
and the LogP model family (see [8—14]). Most of these models are low-level models and require
detailed description of the structure of the algorithm to the level of code in a programming language or
pseudocode. This article extends the basic BSP (Bulk Synchronous Parallelism) model [15] to deal with
the compute-intensive iterative numerical methods executed on distributed-memory multiprocessor
systems. Iterative methods are an important class of numerical methods. An overview of various iterative
methods can be found in [16—19]. The new parallel computation model proposed in this article was
named BSF—Bulk Synchronous Farm. The BSF model is a high-level parallel computation model
based on the master-worker (master-slave) framework [20] and the SPMD (Single-Program-Multiple-
Data) programming model [21, 22]. A distinctive feature of the BSF model is the ability to estimate the
upper bound of scalability in the early stages of the algorithm design.

The rest of the article is organized as follows. In Section 2, the BSF parallel computation model
presented in this paper is described. Section 3 introduces a cost metric for BSF-programs and provides
equations for estimating the speedup and parallel efficiency of an algorithm before its implementation
in a programming language. Moreover, a simple inequality to estimate the upper scalability bound of
a BSF-program is deduced. Section 4 summarises the results and outlines some directions for future
research.

"E-mail: leonid. sokolinsky@susu.ru

o71



572 SOKOLINSKY

2. BSF COMPUTATIONAL MODEL

The BSF (Bulk Synchronous Farm) model is intended for multiprocessor systems with distributed
memory. A BSF-computer consists of a collection of homogeneous computing nodes with private
memory connected by a communication network delivering messages among the nodes. There is just
one node called the master-node in a BSF-computer. The rest of the nodes are the worker-nodes. A
BSF-computer must include at least one master-node and one worker-node.

A BSF-computer utilizes the SPMD programming model according to which all the worker-nodes
executes the same program but process different data. A BSF-program consists of sequences of macro-
steps and global barrier synchronizations performed by the master and all the workers. Each macro-step
is divided into two sections: the master section and the worker section. The master section includes
instructions performed by only the master. A worker section includes instructions performed by only the
workers. The sequential order of the master section and the worker section within the macro-step is not
important. All the worker nodes operate on the same data array, but the base address of the data assigned
to the worker-node for processing is determined by the logical number of this node. A BSF-program
includes the following sequential sections: initialization; iterative process; finalization.

[nitialization is a macro-step in which the master and workers read or generate input data.
Initialization is followed by barrier synchronization. The iterative process repeatedly performs its body
until the exit condition checked by the master becomes true. In the finalization macro-step, the master
outputs the results and ends the program.

The body of the iterative process includes the following macro-steps: 1) sending orders (from
master to workers); 2) processing orders (by workers); 3) receiving results (from workers to master);
4) evaluating the results (by master). In the first macro-step, the master sends the same orders to all
workers. Then, the workers execute the received orders (the master is idle at that time). All the workers
execute the same program code but operate on different data with a base address which depends on the
worker-node number. Therefore, all workers spend the same amount of time on calculation. There are
no data transfers between nodes during order processing. In the third step, all workers send the results
to the master. Next, global barrier synchronization is performed. During the fourth step, the master
evaluates the results it has received. The workers are idle at this time. After evaluation of the results,
the master checks the exit condition. If the exit condition is true, then the iterative process is finished,
otherwise the iterative process is continued.

3. EVALUATION OF BSF-PROGRAM SCALABILITY

The main characteristic of scalability is the speedup. For a parallel program, speedup a(K) can be
defined as a ratio of execution time T} on one computing node to execution time Tk on K computing
nodes:

a(K) =T1/Txk. (1)

Parallel efficiency is another important characteristic of scalability. Parallel efficiency e(K) can be
defined as a ratio of speedup a(K) to the number K of processors:

e(K) = a(K)/K. (2)

This section offers a cost metric which can be used to estimate the scalability of a BSF-program. We
assume that time spent on initialization and finalization of a BSF-program is negligible compared to the
cost of iterative process execution. The cost of an iterative process is equal to the sum of the costs of
separate iterations. Therefore, to estimate the execution time of a BSF program, it is sufficient to obtain
an estimation of the execution time of a single iteration. For this purpose, the following main parameters
of the BSF model are introduced:

K: the number of worker-nodes;

L: an upper bound on the latency, or delay, incurred in communicating a message containing one
byte from its source node to its target node;

ts: the time that the master-node is engaged in sending one order to one worker-node, excluding
latency;

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.39 No.4 2018



ANALYTICAL ESTIMATION OF THE SCALABILITY 573
tyw: the time a BSF-computer with one worker-node needs to perform one order;

t,: the total time that the master-node is engaged in receiving the results from all worker-nodes,
excluding latency;

tp: the total time that the master-node is engaged in evaluating the results received from all worker-
nodes.

The global barrier synchronization performed in iterative process is implemented by the master waiting
for completion of reading all messages from workers, and therefore, it does not require an additional cost.

The time T} needed for the execution of a single iteration by a BSF-computer with one master-node
and one worker-node can be calculated as follows: T = ¢, + t,, + L 4 t, + t, + L, which is equivalent
to

Ty = 2L +ts +ty + 1, + 1. (3)

Now, let us calculate the time Tx a BSF-computer with one master-node and K worker-nodes
needs to execute a single iteration. All of the workers receive the same message from the master, so
the total time for sending messages from the master to the workers is equal to K(L + t5). All of the
workers perform the same program code on their own data segment, so the time of order execution
by a group with K workers is equal to t,,/K. The resulting data volume produced by the workers
is a parameter of the task and does not depend on K, so the total time needed for sending messages
from the workers to the master is equal to K - L +¢,. The time needed for the master to process
the results received from the workers is also a task parameter and does not depend on the number of
workers. Thus, the total execution time of one iteration in a BSF-computer with one master and K
workers can be calculated as follows: T = K(L +t5) + t,/K + K - L+ t, + t,, which is equivalent to
Tk =2L-K +ty- K+t +t,+t,/K. Byreducing the right-hand side of the equation to the common
denominator, we obtain

K2(2L +t5) + K(t, +tp) + ty

Tk = K (4)
Using equations (1), (3) and (4), we obtain the following equation for the speedup of BSF-program:
KQ@RLA+ts+t +1p+ty
a(K) = sk pt ) (5)

T K2QL A ty) + Kty + tp) + tw

Let us analyze a(K) as a function depending on K > 1. The function a(K) takes the value | at
K =1 which is concordant with the definition of the speedup and equation (1). The function a(K)
is a continuous and positive definite function on the interval [1;+00). Let us find the derivative of the
function a(K):

(2L + o+t 4ty + tw)(tw /K> — 2L — t,)
(K(2L +t5) +tp + tp + tw/K)*

[t follows from (6) that the derivative takes the value 0 at the point Ky = \/t,,/(2L + ts). Moreover,
the derivative takes positive values for K < K and negative values for K > Kj. This indicates that the
point K = Kj is the point at which the BSF-program speedup takes the maximum value. Thus, we may
make a conclusion that the value Ky is the upper bound of the BSF-program scalability: K < K.
Note that the upper bound of BSF-program scalability does not depend on the amount of time that the
master is engaged in receiving and evaluating worker results.

One more important characteristic of a parallel program is parallel efficiency, calculated by equa-
tion (2). Let us estimate the efficiency of a BSF-program. Using equations (2) and (5) we obtain

2L +ts +t, + 1ty +ty

d(K) = (6)

e = .
K2(2L + t5) + K(tr + tp) + tw
Assuming K > 1, we have
2L + t, tr+1
~0 and P ~ 0.
K2(2L +t,) + K(tr +tp) + tw K2(2L +t5) + K(t, + tp) + ty

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No.4 2018



574 SOKOLINSKY

Hence,
J— tw
 K2(2L +ts) + K(ty +tp) + tw

for K > 1, and we receive the following approximate equation to estimate the parallel efficiency of a
BSF-program: e(K) = ep.

e(K) =~ eq

4. CONCLUSION

In this article, the new BSF (Bulk Synchronous Farm) model of parallel computations was intro-
duced. The BSF model is intended for evaluating iterative numerical algorithms designed for distributed
memory multiprocessors. One distinctive feature of the BSF model is the ability to evaluate the
scalability of an algorithm in the early phases of its development. The architecture of a BSF-computer
was described. A BSF-computer includes one master-node and several worker-nodes connected by
a communication network. The structure of a BSF-program was specified. A BSF-program uses
the SPMD (Single-Program-Many-Data) model according to which all the worker-nodes execute the
same program but process different data. The execution of a BSF-program is divided into iterations. In
each iteration, the master sends the orders to the workers; the workers execute the orders and send the
results to the master; the master processes the results and checks the exit condition; if the condition is
not satisfied, then the master sends new orders to the workers, beginning the next iteration, otherwise,
the calculations are stopped. A cost metric was constructed for BSF-programs. This metric offers
the following simple estimation for the upper bound of scalability: K < Ky, where K is the number of
worker-nodes, L is the latency, t,, is the time a BSF-computer with one worker-node needs to execute
the order, and ¢ is the time needed to send an order to one worker-node, excluding latency.

A BSF-implementation of the NSLP algorithm [23] was performed to validate the theoretical
studies presented in this article. The NSLP algorithm is used to solve large-scale non-stationary
linear programming problems. A BSF-implementation of the NSLP algorithm is described in arti-
cle [24]. The source code of this implementation is freely available on Github, at https://github.
com/leonid-sokolinsky/BSF-NSLP. The results of the computational experiments presented in [24]
show that the BSF model accurately predicts the upper bound of scalability for the NSLP algorithm
implemented as a BSF-program.

Future work concerning the BSF model includes the following directions. First, develop a formalism
to describe BSF-programs through higher-order functions. Next, design and implement a BSF skeleton
for the rapid development of BSF-programs in C++ using the MPI-library. Finally, validate the BSF
model with different well-known iterative numerical methods.

5. ACKNOWLEDGMENTS

This research was partially supported by the Russian Foundation for Basic Research (project
No. 17-07-00352a), by the Ministry of Education and Science of Russian Federation (gov. order
No. 2.7905.2017/8.9) and by the Government of the Russian Federation according to Act 211 (contract
No. 02.A03.21.0011).

REFERENCES

1. G. Bilardi and A. Pietracaprina, “Models of computation, Theoretical,” in Encyclopedia of Parallel
Computing (Springer US, Boston, MA, 2011), pp. 1150—1158. doi 10.1007/978-0-387-09766-4 218

2. L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM 33 (8), 103—111 (1990). doi
10.1145/79173.79181

3. F M. Auf der Heide and R. Wanka, “Parallel bridging models and their impact on algorithm design,” in
Proceedings of the International Conference on Computational Science—ICCS’01, Part 11, Lect. Notes
Comput. Sci. 2074, 628—637 (2001). doi 10.1007/3-540-45718-6_68

4. L. G. Valiant, “A bridging model for multi-core computing,” J. Comput. Syst. Sci. 77, 154—166 (2011). doi
10.1016/j.jcss.2010.06.012

5. V. Blanco, J. A. Gonzalez, C. Leon, C. Rodriguez, G. Rodriguez, and M. Printista, “Predicting the
performance of parallel programs,” Parallel Comput. 30, 337—356 (2004 ). doi 10.1016/j.parc0.2003.11.004

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.39 No.4 2018



10.

1.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

ANALYTICAL ESTIMATION OF THE SCALABILITY 575

A. V. Gerbessiotis, “Extending the BSP model for multi-core and out-of-core computing: MBSP,” Parallel
Comput. 41,90—102 (2015). doi 10.1016/j.parc0.2014.12.002

H. Chaand D. Lee, “H-BSP: a hierarchical BSP computation model,” J. Supercomput. 18, 179—200 (2001).
doi 10.1023/A:1008113017444

. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von Eicken,

“LogP: towards a realistic model of parallel computation,” in Proceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming—PPOPP’ 93 (ACM Press, New York,
1993), pp. 1—12. doi 10.1145/155332.155333

. A. Alexandrov, M. F. lonescu, K. E. Schauser, and C. Scheiman, “LogGP: incorporating long mes-

sages into the LogP model for parallel computation,” J. Parallel Distrib. Comput. 44, 71-=79 (1997). doi
10.1006/jpdc.1997.1346

G. Liu, Y. Wang, T. Zhao, J. Gu, and D. Li, “mHLogGP: a parallel computation model for CPU/GPU,”
in Network and Parallel Computing, Proceedings of the 9th IFIP International Conference NPC 2012,
Gwangju, Korea, Sept. 6—8, 2012, Ed. by J. J. Park, A. Zomaya, and S. S. Yeo (Springer, Berlin, Heidelberg,
2012), pp. 217—224. doi 10.1007/978-3-642-35606-3_25

F. Lu, J. Song, and Y. Pang, “HLognGP: a parallel computation model for GPU clusters,” Concurr. Comput.:
Practice Experience 27, 4880—4896 (2015). doi 10.1002/cpe.3475

F. Ino, N. Fujimoto, and K. Hagihara, “LogGPS: a parallel computational model for synchronization
analysis,” ACM SIGPLAN Not. 36 (7), 133—142 (2001). doi 10.1145/568014.379592

K. W. Cameron, R. Ge, and X. Sun, “logNP and log3P: accurate analytical models of point-to-point
communication in distributed systems,” IEEE Trans. Comput. 56, 314—327 (2007). doi 10.1109/TC.2007.38
L. Yuan, Y. Zhang, Y. Tang, L. Rao, and X. Sun, “LogGPH: a parallel computational model with hierarchical
communication awareness,” in Proceedings of the 2010 13th IEEE International Conference on Compu-
tational Science and Engineering CSE’10 (IEEE Comput. Soc., Washington, DC, 2010), pp. 268—274.
doi 10.1109/CSE.2010.40

A. Tiskin, “BSP (Bulk Synchronous Parallelism),” in Encyclopedia of Parallel Computing (Springer US,
Boston, MA, 2011), pp. 192—199. doi 10.1007/978-0-387-09766-4_311

L. A. Hageman and D. M. Young, Applied Ilterative Methods (Academic, New York, London, Toronto,
Sydney, San Francisco, 1981).

C. T. Kelley, /terative Methods for Linear and Nonlinear Equations (Soc. Ind. Appl. Math., Philadelphia,
1995). doi 10.1137/1.9781611970944

A. Hadjidimos, “A survey of the iterative methods for the solution of linear systems by extrapolation, relaxation
and other techniques,” J. Comput. Appl. Math. 20, 37—51 (1987). doi 10.1016/0377-0427(87)90124-5

S. Ma and A. Chronopoulos, “Implementation of iterative methods for large sparse nonsymmetric linear
systems on a parallel vector machine,” Int. J. High Perform. Comput. Appl. 4 (4), 9—24 (1990). doi
10.1177/109434209000400402

S. Sahni and G. Vairaktarakis, “The master-slave paradigm in parallel computer and industrial settings,”
J. Global Optimiz. 9, 357—377 (1996). doi 10.1007/BF00121679

F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-program-multiple-data computational
model for EPEX/FORTRAN,” Parallel Comput. 7, 11—24 (1988). doi 10.1016/0167-8191(88)90094-4

F. Darema, “SPMD computational model,” in Encyclopedia of Parallel Computing (Springer US, Boston,
MA, 2011), pp. 1933—1943. doi 10.1007/978-0-387-09766-4_26

I. Sokolinskaya and L. B. Sokolinsky, “On the solution of linear programming problems in the age of big
data,” in Parallel Computational Technologies. PCT 2017, Commun. Comput. Inform. Sci. 753, 86—100
(2017). doi 10.1007/978-3-319-67035-5_7

I. Sokolinskaya and L. B. Sokolinsky, “Scalability evaluation of NSLP algorithm for solving non-stationary
linear programming problems on cluster computing systems,” in Supercomputing, RuSCDays 2017,
Commun. Comput. Inform. Sci. 793, 40—53 (2017). doi 10.1007/978-3-319-71255-0_4

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No.4 2018



